Energy-momentum-consistent simulation of planar geometrically exact beams in a port-Hamiltonian framework
Authors
Philipp L. Kinon, Peter Betsch, Simon R. Eugster
Abstract
We propose a new, port-Hamiltonian formulation for the highly nonlinear dynamics of planar geometrically exact beams, which are amenable to arbitrary large deformations and rotations. A structure-preserving spatial and temporal discretization procedure - using mixed finite elements and second-order time-stepping methods - is proposed. It is observed that the present approach is objective, locking-free and provides an exact discrete representation of the energy and angular momentum balance. By comparing the approach to a classical displacement-based scheme from the literature it is shown that the port-Hamiltonian formulation paves new ways for the design of energy-momentum schemes in computational mechanics. Numerical examples underline the applicability to flexible multibody systems and beneficial numerical performance.
Keywords
Planar Simo-Reissner beam; Port-Hamiltonian systems; Flexible multibody systems; Structure-preserving discretization; Mixed finite elements; Locking
Citation
- Journal: Multibody System Dynamics
- Year: 2025
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11044-025-10087-9
BibTeX
@article{Kinon_2025,
title={{Energy-momentum-consistent simulation of planar geometrically exact beams in a port-Hamiltonian framework}},
ISSN={1573-272X},
DOI={10.1007/s11044-025-10087-9},
journal={Multibody System Dynamics},
publisher={Springer Science and Business Media LLC},
author={Kinon, Philipp L. and Betsch, Peter and Eugster, Simon R.},
year={2025}
}
References
- Shabana, A. A. Flexible Multibody Dynamics: Review of Past and Recent Developments. Multibody System Dynamics 1, 189–222 (1997) – 10.1023/a:1009773505418
- Bauchau, O. A. Flexible Multibody Dynamics. Solid Mechanics and Its Applications (Springer Netherlands, 2011). doi:10.1007/978-94-007-0335-3 – 10.1007/978-94-007-0335-3
- Simo, J. C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering 49, 55–70 (1985) – 10.1016/0045-7825(85)90050-7
- Reissner, E. On one-dimensional finite-strain beam theory: The plane problem. Journal of Applied Mathematics and Physics (ZAMP) 23, 795–804 (1972) – 10.1007/bf01602645
- S.S. Antman, Nonlinear Problems of Elasticity (2005)
- Cardona, A. & Geradin, M. A beam finite element non‐linear theory with finite rotations. Numerical Meth Engineering 26, 2403–2438 (1988) – 10.1002/nme.1620261105
- Betsch, P. & Steinmann, P. Constrained dynamics of geometrically exact beams. Computational Mechanics 31, 49–59 (2003) – 10.1007/s00466-002-0392-1
- Crisfield, M. A. & Jelenić;, G. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. R. Soc. Lond. A 455, 1125–1147 (1999) – 10.1098/rspa.1999.0352
- Lang, H., Linn, J. & Arnold, M. Multi-body dynamics simulation of geometrically exact Cosserat rods. Multibody Syst Dyn 25, 285–312 (2010) – 10.1007/s11044-010-9223-x
- Lang, H. & Arnold, M. Numerical aspects in the dynamic simulation of geometrically exact rods. Applied Numerical Mathematics 62, 1411–1427 (2012) – 10.1016/j.apnum.2012.06.011
- Eugster, S. R., Hesch, C., Betsch, P. & Glocker, Ch. Director‐based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Numerical Meth Engineering 97, 111–129 (2013) – 10.1002/nme.4586
- Leyendecker, S., Betsch, P. & Steinmann, P. Objective energy–momentum conserving integration for the constrained dynamics of geometrically exact beams. Computer Methods in Applied Mechanics and Engineering 195, 2313–2333 (2006) – 10.1016/j.cma.2005.05.002
- Harsch, J., Sailer, S. & Eugster, S. R. A total Lagrangian, objective and intrinsically locking‐free Petrov–Galerkin SE(3) Cosserat rod finite element formulation. Numerical Meth Engineering 124, 2965–2994 (2023) – 10.1002/nme.7236
- Leitz, T., Sato Martín de Almagro, R. T. & Leyendecker, S. Multisymplectic Galerkin Lie group variational integrators for geometrically exact beam dynamics based on unit dual quaternion interpolation — no shear locking. Computer Methods in Applied Mechanics and Engineering 374, 113475 (2021) – 10.1016/j.cma.2020.113475
- Herrmann, M. & Kotyczka, P. Relative-kinematic formulation of geometrically exact beam dynamics based on Lie group variational integrators. Computer Methods in Applied Mechanics and Engineering 432, 117367 (2024) – 10.1016/j.cma.2024.117367
- Wasmer, P. & Betsch, P. A projection‐based quaternion discretization of the geometrically exact beam model. Numerical Meth Engineering 125, (2024) – 10.1002/nme.7538
- Meier, C., Popp, A. & Wall, W. A. Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff–Love Theory Versus Simo–Reissner Theory. Arch Computat Methods Eng 26, 163–243 (2017) – 10.1007/s11831-017-9232-5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information 37, 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Thoma, T. & Kotyczka, P. Port-Hamiltonian FE models for filaments. IFAC-PapersOnLine 55, 353–358 (2022) – 10.1016/j.ifacol.2022.11.078
- Kinon, P. L., Thoma, T., Betsch, P. & Kotyczka, P. Port-Hamiltonian formulation and structure-preserving discretization of hyperelastic strings. arXiv (2023) doi:10.48550/ARXIV.2304.10957 – 10.48550/arxiv.2304.10957
- Kinon, P. L., Thoma, T., Betsch, P. & Kotyczka, P. Generalized Maxwell viscoelasticity for geometrically exact strings: Nonlinear port-Hamiltonian formulation and structure-preserving discretization. IFAC-PapersOnLine 58, 101–106 (2024) – 10.1016/j.ifacol.2024.08.264
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling 75, 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling 75, 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Golo, G., van der Schaft, A. & Stramigioli, S. Hamiltonian Formulation of Planar Beams. IFAC Proceedings Volumes 36, 147–152 (2003) – 10.1016/s1474-6670(17)38882-1
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Trans. Robot. 23, 650–660 (2007) – 10.1109/tro.2007.898990
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. Port-Hamiltonian modeling of a geometrically nonlinear hyperelastic beam. IFAC-PapersOnLine 58, 309–314 (2024) – 10.1016/j.ifacol.2024.08.299
- Thoma, T., Kotyczka, P. & Egger, H. On the velocity-stress formulation for geometrically nonlinear elastodynamics and its structure-preserving discretization. Mathematical and Computer Modelling of Dynamical Systems 30, 701–720 (2024) – 10.1080/13873954.2024.2397486
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian flexible multibody dynamics. Multibody Syst Dyn 51, 343–375 (2020) – 10.1007/s11044-020-09758-6
- Caasenbrood, B., Pogromsky, A. & Nijmeijer, H. Energy-Shaping Controllers for Soft Robot Manipulators Through Port-Hamiltonian Cosserat Models. SN COMPUT. SCI. 3, (2022) – 10.1007/s42979-022-01373-w
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information 38, 493–533 (2020) – 10.1093/imamci/dnaa038
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling 89, 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Brugnoli, A., Rashad, R., Califano, F., Stramigioli, S. & Matignon, D. Mixed finite elements for port-Hamiltonian models of von Kármán beams. IFAC-PapersOnLine 54, 186–191 (2021) – 10.1016/j.ifacol.2021.11.076
- Stander, N. & Stein, E. An energy‐conserving planar finite beam element for dynamics of flexible mechanisms. Engineering Computations 13, 60–85 (1996) – 10.1108/02644409610128418
- Ibrahimbegović, A. & Mamouri, S. Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems. Computers & Structures 70, 1–22 (1999) – 10.1016/s0045-7949(98)00150-3
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Kinon, P. L., Thoma, T., Betsch, P. & Kotyczka, P. Discrete nonlinear elastodynamics in a port‐Hamiltonian framework. Proc Appl Math and Mech 23, (2023) – 10.1002/pamm.202300144
- Brugnoli, A., Cardoso-Ribeiro, F. L., Haine, G. & Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions. IFAC-PapersOnLine 53, 7557–7562 (2020) – 10.1016/j.ifacol.2020.12.1351
- Thoma, T. & Kotyczka, P. Explicit Port-Hamiltonian FEM-Models for Linear Mechanical Systems with Non-Uniform Boundary Conditions. IFAC-PapersOnLine 55, 499–504 (2022) – 10.1016/j.ifacol.2022.09.144
- Brugnoli, A., Haine, G. & Matignon, D. Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control. IFAC-PapersOnLine 55, 418–423 (2022) – 10.1016/j.ifacol.2022.11.089
- O.C. Zienkiewicz, The Finite Element Method: Its Basis and Fundamentals (2010)
- Nonlinear Finite Element Methods. (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-71001-1 – 10.1007/978-3-540-71001-1
- Geometric Numerical Integration. Springer Series in Computational Mathematics (Springer-Verlag, 2006). doi:10.1007/3-540-30666-8 – 10.1007/3-540-30666-8
- Gonzalez, O. Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6, 449–467 (1996) – 10.1007/bf02440162
- Franke, M., Zähringer, F., Hille, M., Kinon, P. & Reiff, P. MoofeKIT: MATLAB Object-Oriented Finite Element KIT, v1.0.3. (Zenodo, 2025). doi:10.5281/ZENODO.15044922 – 10.5281/zenodo.15044922
- Simo, J. C. & Vu-Quoc, L. On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II. Journal of Applied Mechanics 53, 855–863 (1986) – 10.1115/1.3171871
- Hsiao, K.-M. & Jang, J.-Y. Dynamic analysis of planar flexible mechanisms by co-rotational formulation. Computer Methods in Applied Mechanics and Engineering 87, 1–14 (1991) – 10.1016/0045-7825(91)90143-t
- Gams, M., Planinc, I. & Saje, M. Energy conserving time integration scheme for geometrically exact beam. Computer Methods in Applied Mechanics and Engineering 196, 2117–2129 (2007) – 10.1016/j.cma.2006.10.012
- Hante, S., Tumiotto, D. & Arnold, M. A Lie group variational integration approach to the full discretization of a constrained geometrically exact Cosserat beam model. Multibody Syst Dyn 54, 97–123 (2021) – 10.1007/s11044-021-09807-8
- Ren, H., Fan, W. & Zhu, W. D. An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis. Journal of Vibration and Acoustics 140, (2017) – 10.1115/1.4037513
- Campanelli, M., Berzeri, M. & Shabana, A. A. Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems. Journal of Mechanical Design 122, 498–507 (1999) – 10.1115/1.1289636
- Yu, X., Zwölfer, A. & Mikkola, A. An efficient, floating-frame-of-reference-based recursive formulation to model planar flexible multibody applications. Journal of Sound and Vibration 547, 117542 (2023) – 10.1016/j.jsv.2022.117542
- Fan, W. An efficient recursive rotational-coordinate-based formulation of a planar Euler–Bernoulli beam. Multibody Syst Dyn 52, 211–227 (2021) – 10.1007/s11044-021-09783-z
- Berzeri, M., Campanelli, M. & Shabana, A. A. Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation. Multibody System Dynamics 5, 21–54 (2001) – 10.1023/a:1026465001946
- Huang, D. & Leyendecker, S. An electromechanically coupled beam model for dielectric elastomer actuators. Comput Mech 69, 805–824 (2021) – 10.1007/s00466-021-02115-0
- Ferri, G., Ignesti, D. & Marino, E. An efficient displacement-based isogeometric formulation for geometrically exact viscoelastic beams. Computer Methods in Applied Mechanics and Engineering 417, 116413 (2023) – 10.1016/j.cma.2023.116413
- Ebel, H. et al. Data publishing in mechanics and dynamics: challenges, guidelines, and examples from engineering design. DCE 6, (2025) – 10.1017/dce.2025.13