Port-Hamiltonian flexible multibody dynamics
Authors
Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger, Denis Matignon
Abstract
A new formulation for the modular construction of flexible multibody systems is presented. By rearranging the equations for a flexible floating body and introducing the appropriate canonical momenta, the model is recast into a coupled system of ordinary and partial differential equations in port-Hamiltonian (pH) form. This approach relies on a floating frame description and is valid under the assumption of small deformations. This allows including mechanical models that cannot be easily formulated in terms of differential forms. Once a pH model is established, a finite element based method is then introduced to discretize the dynamics in a structure-preserving manner. Thanks to the features of the pH framework, complex multibody systems could be constructed in a modular way. Constraints are imposed at the velocity level, leading to an index 2 quasilinear differential-algebraic system. Numerical tests are carried out to assess the validity of the proposed approach.
Keywords
Port-Hamiltonian systems; Floating frame formulation; Flexible multibody systems; Structure-preserving discretization; Substructuring
Citation
- Journal: Multibody System Dynamics
- Year: 2021
- Volume: 51
- Issue: 3
- Pages: 343–375
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11044-020-09758-6
BibTeX
@article{Brugnoli_2020,
title={{Port-Hamiltonian flexible multibody dynamics}},
volume={51},
ISSN={1573-272X},
DOI={10.1007/s11044-020-09758-6},
number={3},
journal={Multibody System Dynamics},
publisher={Springer Science and Business Media LLC},
author={Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis},
year={2020},
pages={343--375}
}
References
- Alazard, D., Perez, J. A., Cumer, C. & Loquen, T. Two-input two-output port model for mechanical systems. AIAA Guidance, Navigation, and Control Conference (2015) doi:10.2514/6.2015-1778 – 10.2514/6.2015-1778
- Andersson, C., Führer, C. & Åkesson, J. Assimulo: A unified framework for ODE solvers. Mathematics and Computers in Simulation vol. 116 26–43 (2015) – 10.1016/j.matcom.2015.04.007
- Arnold, D. N. & Lee, J. J. Mixed Methods for Elastodynamics with Weak Symmetry. SIAM Journal on Numerical Analysis vol. 52 2743–2769 (2014) – 10.1137/13095032x
- Bauchau, O. A. & Laulusa, A. Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems. Journal of Computational and Nonlinear Dynamics vol. 3 (2007) – 10.1115/1.2803258
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bremer, H. Elastic Multibody Dynamics. (Springer Netherlands, 2008). doi:10.1007/978-1-4020-8680-9 – 10.1007/978-1-4020-8680-9
- Brenan, K. E., Campbell, S. L. & Petzold, L. R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. (1995) doi:10.1137/1.9781611971224 – 10.1137/1.9781611971224
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Cardona, A. Multibody System Dynamics vol. 4 245–266 (2000) – 10.1023/a:1009875930232
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Celledoni, E., Høiseth, E. H. & Ramzina, N. Passivity-preserving splitting methods for rigid body systems. Multibody System Dynamics vol. 44 251–275 (2018) – 10.1007/s11044-018-9628-5
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Chaturantabut, S., Beattie, C. & Gugercin, S. Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems. SIAM Journal on Scientific Computing vol. 38 B837–B865 (2016) – 10.1137/15m1055085
- Chebbi, J., Dubanchet, V., Perez Gonzalez, J. A. & Alazard, D. Linear dynamics of flexible multibody systems. Multibody System Dynamics vol. 41 75–100 (2016) – 10.1007/s11044-016-9559-y
- Cohen, G. & Fauqueux, S. Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains. SIAM Journal on Scientific Computing vol. 26 864–884 (2005) – 10.1137/s1064827502407457
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Ellenbroek, M. & Schilder, J. On the use of absolute interface coordinates in the floating frame of reference formulation for flexible multibody dynamics. Multibody System Dynamics vol. 43 193–208 (2017) – 10.1007/s11044-017-9606-3
- Forni, P., Jeltsema, D. & Lopes, G. A. D. Port-Hamiltonian Formulation of Rigid-Body Attitude Control. IFAC-PapersOnLine vol. 48 164–169 (2015) – 10.1016/j.ifacol.2015.10.233
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Holm, D. D. Geometric Mechanics. (IMPERIAL COLLEGE PRESS, 2008). doi:10.1142/p549 – 10.1142/p549
- Horn, R. A. & Johnson, C. R. Matrix Analysis. (2012) doi:10.1017/cbo9781139020411 – 10.1017/cbo9781139020411
- HURTY, W. C. Dynamic analysis of structural systems using component modes. AIAA Journal vol. 3 678–685 (1965) – 10.2514/3.2947
- Kitis, L. & Lindenberg, R. K. Natural frequencies and mode shapes of flexible mechanisms by a transfer matrix method. Finite Elements in Analysis and Design vol. 6 267–285 (1990) – 10.1016/0168-874x(90)90020-f
- de Klerk, D., Rixen, D. J. & Voormeeren, S. N. General Framework for Dynamic Substructuring: History, Review and Classification of Techniques. AIAA Journal vol. 46 1169–1181 (2008) – 10.2514/1.33274
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Laulusa, A. & Bauchau, O. A. Review of Classical Approaches for Constraint Enforcement in Multibody Systems. Journal of Computational and Nonlinear Dynamics vol. 3 (2007) – 10.1115/1.2803257
- Leyendecker, S., Betsch, P. & Steinmann, P. The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics. Multibody System Dynamics vol. 19 45–72 (2007) – 10.1007/s11044-007-9056-4
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Marsden, J. E. Lectures on Geometric Models in Mathematical Physics. (1981) doi:10.1137/1.9781611970326 – 10.1137/1.9781611970326
- V. Mehrmann, Proceedings of the 59th IEEE Conference on Decision and Control (2019)
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Transactions on Automatic Control vol. 61 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Nowakowski, C., Fehr, J., Fischer, M. & Eberhard, P. Model Order Reduction in Elastic Multibody Systems using the Floating Frame of Reference Formulation. IFAC Proceedings Volumes vol. 45 40–48 (2012) – 10.3182/20120215-3-at-3016.00007
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Perez, J. A., Alazard, D., Loquen, T., Pittet, C. & Cumer, C. Flexible Multibody System Linear Modeling for Control Using Component Modes Synthesis and Double-Port Approach. Journal of Dynamic Systems, Measurement, and Control vol. 138 (2016) – 10.1115/1.4034149
- Rathgeber, F. et al. Firedrake. ACM Transactions on Mathematical Software vol. 43 1–27 (2016) – 10.1145/2998441
- Rong, B., Rui, X., Tao, L. & Wang, G. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dynamics vol. 98 1519–1553 (2019) – 10.1007/s11071-019-05191-3
- Rui, X., He, B., Lu, Y., Lu, W. & Wang, G. Discrete Time Transfer Matrix Method for Multibody System Dynamics. Multibody System Dynamics vol. 14 317–344 (2005) – 10.1007/s11044-005-5006-1
- Sanfedino, F., Alazard, D., Pommier-Budinger, V., Falcoz, A. & Boquet, F. Finite element based N-Port model for preliminary design of multibody systems. Journal of Sound and Vibration vol. 415 128–146 (2018) – 10.1016/j.jsv.2017.11.021
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Scholz, L. Condensed Forms for Linear Port-Hamiltonian Descriptor Systems. The Electronic Journal of Linear Algebra vol. 35 65–89 (2019) – 10.13001/1081-3810.3638
- Simeon, B. Numerical Algorithms vol. 19 235–246 (1998) – 10.1023/a:1019118809892
- Simeon, B. Computational Flexible Multibody Dynamics. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-35158-7 – 10.1007/978-3-642-35158-7
- Steinbrecher, A. Numerical solution of quasi-linear differential-algebraic equations and industrial simulation of multibody systems. Technische Universität Berlin (2006) doi:10.14279/DEPOSITONCE-1360 – 10.14279/depositonce-1360
- Tan, T. M., Yousuff, A., Bahar, L. Y. & Konstantinidis, M. A modified finite element-transfer matrix for control design of space structures. Computers & Structures vol. 36 47–55 (1990) – 10.1016/0045-7949(90)90173-y
- Wasfy, T. M. & Noor, A. K. Computational strategies for flexible multibody systems. Applied Mechanics Reviews vol. 56 553–613 (2003) – 10.1115/1.1590354
- Young, K. D. Distributed finite-element modeling and control approach for large flexible structures. Journal of Guidance, Control, and Dynamics vol. 13 703–713 (1990) – 10.2514/3.25389