Port Hamiltonian formulation of infinite dimensional systems I. Modeling
Authors
A. Macchelli, A.J. van der Schaft, C. Melchiorri
Abstract
In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multivariable case. The resulting class of infinite dimensional systems is quite general, thus allowing the description of several physical phenomena, such as heat conduction, piezoelectricity and elasticity. Furthermore, classical PDEs can be rewritten within this framework. The key point is the generalization of the notion of finite dimensional Dirac structure in order to deal with an infinite dimensional space of power variables.
Citation
- Journal: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)
- Year: 2004
- Volume:
- Issue:
- Pages: 3762–3767 Vol.4
- Publisher: IEEE
- DOI: 10.1109/cdc.2004.1429324
BibTeX
@inproceedings{Macchelli_2004,
title={{Port Hamiltonian formulation of infinite dimensional systems I. Modeling}},
DOI={10.1109/cdc.2004.1429324},
booktitle={{2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)}},
publisher={IEEE},
author={Macchelli, A. and van der Schaft, A.J. and Melchiorri, C.},
year={2004},
pages={3762-3767 Vol.4}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory (2000)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- paynter, Analysis and Design of Engineering Systems (1961)
- renardy, An Introduction to Partial Differential Equations (2004)
- golo, A Hamiltonian formulation of the Timoshenko beam model. Proc Mechatronics 2002 (2002)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.2307/2001258
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- maschke, Port controlled Hamiltonian systems: Modeling origins and system theoretic properties. Proc Third Conf on Nonlinear Control Systems (NOLCOS) (1992)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- ingarden, Classical Electrodynamics (1985)
- Gomberoff, A. & Hojman, S. A. Non-standard construction of Hamiltonian structures. Journal of Physics A: Mathematical and General vol. 30 5077–5084 (1997) – 10.1088/0305-4470/30/14/018
- Van der Schaft, A. J. & Maschke, B. M. Fluid dynamical systems as Hamiltonian boundary control systems. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 5 4497–4502 – 10.1109/cdc.2001.980911
- Maschke, B. M. & van der Schaft, A. J. Interconnection of systems: the network paradigm. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 207–212 – 10.1109/cdc.1996.574297