Comparison of Alternative Port-Hamiltonian Dynamics Extensions to the Thermodynamic Domain Toward IDA-PBC-Like Control: Application to a Heat Transfer Model
Authors
Abstract
The dynamics of port-Hamiltonian systems is based on energy balance principles (the first law of thermodynamics) embedded in the structure of the model. However, when dealing with thermodynamic subsystems, the second law (entropy production) should also be explicitly taken into account. Several frameworks were developed as extensions to the thermodynamic domain of port-Hamiltonian systems. In our work, we study three of them, namely irreversible port-Hamiltonian systems, entropy-based generalized Hamiltonian systems, and entropy-production-metric-based port-Hamiltonian systems, which represent alternative approaches of selecting the state variables, the storage function, simplicity of physical interpretation, etc. On the example of a simplified lumped-parameter model of a heat exchanger, we study the frameworks in terms of their implementability for an IDA-PBC-like control and the simplicity of using these frameworks for practitioners already familiar with the port-Hamiltonian systems. The comparative study demonstrated the possibility of using each of these approaches to derive IDA-PBC-like thermodynamically consistent control and provided insight into the applicability of each framework for the modeling and control of multiphysics systems with thermodynamic subsystems.
Citation
- Journal: Dynamics
- Year: 2025
- Volume: 5
- Issue: 4
- Pages: 42
- Publisher: MDPI AG
- DOI: 10.3390/dynamics5040042
BibTeX
@article{Kuznyetsov_2025,
title={{Comparison of Alternative Port-Hamiltonian Dynamics Extensions to the Thermodynamic Domain Toward IDA-PBC-Like Control: Application to a Heat Transfer Model}},
volume={5},
ISSN={2673-8716},
DOI={10.3390/dynamics5040042},
number={4},
journal={Dynamics},
publisher={MDPI AG},
author={Kuznyetsov, Oleksiy},
year={2025},
pages={42}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Feng, W., Deng, Y., Li, H., Chen, D. & Li, F. Design of a novel hybrid control for permanent magnet synchronous generator–based wind energy conversion system. Journal of Vibration and Control 28, 2357–2372 (2021) – 10.1177/10775463211010533
- Vu, N. M. T. & Lefèvre, L. A connection between optimal control and IDA-PBC design. IFAC-PapersOnLine 51, 205–210 (2018) – 10.1016/j.ifacol.2018.06.054
- Alkrunz, M. & Yalçın, Y. Adaptive interconnection and damping assignment passivity‐based control for linearly parameterized
discrete‐time port controlled Hamiltonian systems via I&I approach. Adaptive Control & Signal 35, 69–88 (2020) – 10.1002/acs.3187 - Chen, K., Zhang, Z., Wu, B., Song, M. & Wu, X. An air-cooled system with a control strategy for efficient battery thermal management. Applied Thermal Engineering 236, 121578 (2024) – 10.1016/j.applthermaleng.2023.121578
- Liu, K. et al. Electrochemical modeling and parameterization towards control-oriented management of lithium-ion batteries. Control Engineering Practice 124, 105176 (2022) – 10.1016/j.conengprac.2022.105176
- Sanz i López, V., Costa-Castelló, R. & Batlle, C. Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications. Energies 15, 6423 (2022) – 10.3390/en15176423
- Miao, S. et al. Enhancing energy efficiency through combined PEMFC and MH systems and advanced exhaust management strategies. International Journal of Hydrogen Energy 144, 992–1000 (2025) – 10.1016/j.ijhydene.2025.01.385
- Ahmad, An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustain. Energy Technol. Assess. (2021)
- Wrobel, R. A technology overview of thermal management of integrated motor drives – Electrical Machines. Thermal Science and Engineering Progress 29, 101222 (2022) – 10.1016/j.tsep.2022.101222
- Bai, S. & Liu, C. Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles. Renewable and Sustainable Energy Reviews 147, 111188 (2021) – 10.1016/j.rser.2021.111188
- Farhat, O., Faraj, J., Hachem, F., Castelain, C. & Khaled, M. A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations. Cleaner Engineering and Technology 6, 100387 (2022) – 10.1016/j.clet.2021.100387
- Akbar, Performance enhancement of a hybrid photovoltaic-thermal-thermoelectric (PVT-TE) module using nanofluid-based cooling: Indoor experimental tests and multi-objective optimization. Sustain. Energy Technol. Assess. (2021)
- Shakouri, A., Gorjian, S. & Ghobadian, B. Energy, exergy, and exergoeconomic (3E) evaluation of a hybrid multigeneration system based on a solar tower. Applied Thermal Engineering 252, 123660 (2024) – 10.1016/j.applthermaleng.2024.123660
- Pathak, A detailed review on the performance of photovoltaic/thermal system using various cooling methods. Sustain. Energy Technol. Assess. (2022)
- Dongellini, M., Naldi, C. & Morini, G. L. Influence of sizing strategy and control rules on the energy saving potential of heat pump hybrid systems in a residential building. Energy Conversion and Management 235, 114022 (2021) – 10.1016/j.enconman.2021.114022
- van der Schaft, A., Rao, S. & Jayawardhana, B. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics. SIAM J. Appl. Math. 73, 953–973 (2013) – 10.1137/11085431x
- Makkar, Energy-based modeling and control of continuous chemical reactors under isothermal conditions. Control Eng. Appl. Inf. (2016)
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters 30, 253–264 (1997) – 10.1016/s0167-6911(97)00023-6
- Hoang, H., Couenne, F., Jallut, C. & Gorrec, Y. L. Hamiltonian formulation and IDA-PBC control of non isothermal continuous stirred tank reactors. IFAC Proceedings Volumes 43, 715–720 (2010) – 10.3182/20100705-3-be-2011.00118
- Hangos, K. M. Engineering Model Reduction and Entropy-based Lyapunov Functions in Chemical Reaction Kinetics. Entropy 12, 772–797 (2010) – 10.3390/e12040772
- Krishna, A. & Schiffer, J. A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid. IFAC-PapersOnLine 54, 287–293 (2021) – 10.1016/j.ifacol.2021.11.092
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- García-Sandoval, J. P., Hudon, N., Dochain, D. & González-Álvarez, V. Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach. Chemical Engineering Science 139, 261–272 (2016) – 10.1016/j.ces.2015.07.039
- García-Sandoval, J. P., Hudon, N. & Dochain, D. Generalized Hamiltonian representation of thermo-mechanical systems based on an entropic formulation. Journal of Process Control 51, 18–26 (2017) – 10.1016/j.jprocont.2016.09.011
- Romo-Hernandez, A., Hudon, N., Ydstie, B. E. & Dochain, D. Internal Entropy Production as a Lyapunov Function for Thermal Equilibrium in Irreversible Multiphase Systems. IFAC-PapersOnLine 55, 27–32 (2022) – 10.1016/j.ifacol.2022.08.025
- Ramirez, H., Gorrec, Y. L., Maschke, B. & Couenne, F. Passivity Based Control of Irreversible Port Hamiltonian Systems. IFAC Proceedings Volumes 46, 84–89 (2013) – 10.3182/20130714-3-fr-4040.00012
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica 64, 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Tefera, D. T., Dubljevic, S. & Prasad, V. A Port Hamiltonian approach to dynamical chemical process systems network modeling and analysis. Chemical Engineering Science 261, 117907 (2022) – 10.1016/j.ces.2022.117907
- Marquez, F. M., Zufiria, P. J. & Yebra, L. J. Port-Hamiltonian Modeling of Thermofluid Systems and Object-Oriented Implementation With Modelica I: Thermodynamic Part. IEEE Access 9, 131496–131519 (2021) – 10.1109/access.2021.3115038
- Dong, Z., Li, J., Zhang, Z., Dong, Y. & Huang, X. The definition of entropy production metric with application in passivity-based control of thermodynamic systems. Renewable and Sustainable Energy Reviews 209, 115065 (2025) – 10.1016/j.rser.2024.115065
- Li, J. & Dong, Z. Passivity-based control for methane steam reforming in nuclear cogeneration systems. International Journal of Hydrogen Energy 140, 473–482 (2025) – 10.1016/j.ijhydene.2025.05.367
- Tangde, V. M., Bhalekar, A. A. & Andresen, B. Thermodynamic Stability Theories of Irreversible Processes and the Fourth Law of Thermodynamics. Entropy 26, 442 (2024) – 10.3390/e26060442
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Interconnection and Damping Assignment - Passivity Based Control of Irreversible Port Hamiltonian Systems. IFAC Proceedings Volumes 47, 9111–9116 (2014) – 10.3182/20140824-6-za-1003.02388
- Gay-Balmaz, F. & Yoshimura, H. From Lagrangian Mechanics to Nonequilibrium Thermodynamics: A Variational Perspective. Entropy 21, 8 (2018) – 10.3390/e21010008
- de León, M. & Bajo, J. A geometric description of some thermodynamical systems. J. Phys. A: Math. Theor. 58, 175203 (2025) – 10.1088/1751-8121/adcd14
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997) – 10.1103/physreve.56.6620
- Grmela, M. GENERIC guide to the multiscale dynamics and thermodynamics. J. Phys. Commun. 2, 032001 (2018) – 10.1088/2399-6528/aab642
- Morrison, P. J. Bracket formulation for irreversible classical fields. Physics Letters A 100, 423–427 (1984) – 10.1016/0375-9601(84)90635-2
- Zaidni, A., Morrison, P. J. & Benjelloun, S. Thermodynamically consistent Cahn–Hilliard–Navier–Stokes equations using the metriplectic dynamics formalism. Physica D: Nonlinear Phenomena 468, 134303 (2024) – 10.1016/j.physd.2024.134303
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control 19, 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- van der Schaft, A. Classical Thermodynamics Revisited: A Systems and Control Perspective. IEEE Control Syst. 41, 32–60 (2021) – 10.1109/mcs.2021.3092809
- van der Schaft, A. Geometric Modeling for Control of Thermodynamic Systems. Entropy 25, 577 (2023) – 10.3390/e25040577
- Philipp, F. M., Schaller, M., Worthmann, K., Faulwasser, T. & Maschke, B. Optimal control of port-Hamiltonian systems: Energy, entropy, and exergy. Systems & Control Letters 194, 105942 (2024) – 10.1016/j.sysconle.2024.105942