Generalized Hamiltonian representation of thermo-mechanical systems based on an entropic formulation
Authors
J.P. García-Sandoval, N. Hudon, D. Dochain
Abstract
In this work, we present an approach to construct generalized Hamiltonian representations for thermo-mechanical systems. Using entropic formulation of thermodynamic systems, the construction is applied to a class of thermo-mechanical systems. The proposed approach leads to an explicit expression of the dissipation along the trajectories of the dynamics. The considered thermo-mechanical systems are, in a thermodynamical sense, systems for which the dynamics of the extensive variables are functions of the intensive variables with respect to an entropic formulation. Using the entropy as the storage function, the dissipative structures of an analogue to a port-controlled Hamiltonian (PCH) representation are identified with irreversible phenomena, while the conservative structures are identified with reversible or isentropic phenomena. Examples are presented to illustrate the application of the proposed methodology, including a reacting system.
Keywords
dissipative systems, entropic formulation, generalized hamiltonian dynamics, thermo-mechanical systems, thermodynamics
Citation
- Journal: Journal of Process Control
- Year: 2017
- Volume: 51
- Issue:
- Pages: 18–26
- Publisher: Elsevier BV
- DOI: 10.1016/j.jprocont.2016.09.011
BibTeX
@article{Garc_a_Sandoval_2017,
title={{Generalized Hamiltonian representation of thermo-mechanical systems based on an entropic formulation}},
volume={51},
ISSN={0959-1524},
DOI={10.1016/j.jprocont.2016.09.011},
journal={Journal of Process Control},
publisher={Elsevier BV},
author={García-Sandoval, J.P. and Hudon, N. and Dochain, D.},
year={2017},
pages={18--26}
}References
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Rojas, O. J., Bao, J. & Lee, P. L. On dissipativity, passivity and dynamic operability of nonlinear processes. Journal of Process Control 18, 515–526 (2008) – 10.1016/j.jprocont.2007.07.007
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control 19, 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Multidomain modeling of nonlinear networks and systems. IEEE Control Syst. 29, 28–59 (2009) – 10.1109/mcs.2009.932927
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters 30, 253–264 (1997) – 10.1016/s0167-6911(97)00023-6
- Jillson, K. R. & Erik Ydstie, B. Process networks with decentralized inventory and flow control. Journal of Process Control 17, 399–413 (2007) – 10.1016/j.jprocont.2006.12.006
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal 47, 1819–1831 (2001) – 10.1002/aic.690470813
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science 65, 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Nič, (2009)
- Kjelstrup, (2010)
- García-Sandoval, Dissipative and conservative structures for thermo-mechanical systems. (2015)
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quart. Rev. Biophys. 6, 1–134 (1973) – 10.1017/s0033583500000081
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering 32, 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Hoang, N. H. & Dochain, D. On an evolution criterion of homogeneous multi-component mixtures with chemical transformation. Systems & Control Letters 62, 170–177 (2013) – 10.1016/j.sysconle.2012.11.013
- García-Sandoval, J. P., González-Álvarez, V. & Calderón, C. Stability analysis and passivity properties for a class of chemical reactors: Internal entropy production approach. Computers & Chemical Engineering 75, 184–195 (2015) – 10.1016/j.compchemeng.2015.01.021