Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach
Authors
J.P. García-Sandoval, N. Hudon, D. Dochain, V. González-Álvarez
Abstract
In this contribution, stability and passivity properties of a class of thermodynamic processes are addressed from a thermodynamical point of view. These thermodynamic processes can be constituted by multiple spatially homogeneous dynamic subsystems modeled by ordinary differential equations. It is shown that the internal entropy production may be used as a Lyapunov function candidate to prove the isolated system stability properties and as a storage function to assess the passivity properties when the system interacts with the surroundings. In addition, it is shown that the stability condition depends on a matrix whose dimension is equal to the number of modeled dynamical phenomena taking place within the system, i.e. the number of phenomena can be smaller than the system dimension. Moreover, a port-controlled Hamiltonian representation of this class of systems based on the internal entropy production is developed. Finally, the theory proposed is applied to three study cases: a heat exchanger, a ideal gas adiabatic chemical reactor and a ideal gas jacketed chemical reactor.
Keywords
internal entropy production, passivity, port-controlled hamiltonian systems, stability, thermodynamics
Citation
- Journal: Chemical Engineering Science
- Year: 2016
- Volume: 139
- Issue:
- Pages: 261–272
- Publisher: Elsevier BV
- DOI: 10.1016/j.ces.2015.07.039
BibTeX
@article{Garc_a_Sandoval_2016,
title={{Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach}},
volume={139},
ISSN={0009-2509},
DOI={10.1016/j.ces.2015.07.039},
journal={Chemical Engineering Science},
publisher={Elsevier BV},
author={García-Sandoval, J.P. and Hudon, N. and Dochain, D. and González-Álvarez, V.},
year={2016},
pages={261--272}
}References
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering 20, S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica 37, 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Alonso, A. A., Ydstie, B. E. & Banga, J. R. From irreversible thermodynamics to a robust control theory for distributed process systems. Journal of Process Control 12, 507–517 (2002) – 10.1016/s0959-1524(01)00017-8
- Antelo, L. T., Otero-Muras, I., Banga, J. R. & Alonso, A. A. A systematic approach to plant-wide control based on thermodynamics. Computers & Chemical Engineering 31, 677–691 (2007) – 10.1016/j.compchemeng.2006.11.004
- Balaji, S., Garcia-Osorio, V. & Erik Ydstie, B. Passivity based control of reaction diffusion systems: Application to the vapor recovery reactor in carbothermic aluminum production. Chemical Engineering Science 65, 4792–4802 (2010) – 10.1016/j.ces.2010.05.037
- Baldea, M., El-Farra, N. H. & Ydstie, B. E. Dynamics and control of chemical process networks: Integrating physics, communication and computation. Computers & Chemical Engineering 51, 42–54 (2013) – 10.1016/j.compchemeng.2012.05.016
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr. 36, 1228–1240 (1991) – 10.1109/9.100932
- Coffey, D. P., Erik Ydstie, B. & Farschman, C. A. Distillation stability using passivity and thermodynamics. Computers & Chemical Engineering 24, 317–322 (2000) – 10.1016/s0098-1354(00)00467-1
- Dammers, W. R. & Tels, M. Thermodynamic stability and entropy production in adiabatic stirred flow reactors. Chemical Engineering Science 29, 83–90 (1974) – 10.1016/0009-2509(74)85033-5
- de Groot, (2011)
- Farschman, C. A., Viswanath, K. P. & Erik Ydstie, B. Process systems and inventory control. AIChE Journal 44, 1841–1857 (1998) – 10.1002/aic.690440814
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control 19, 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica 46, 127–132 (2010) – 10.1016/j.automatica.2009.10.012
- García-Sandoval, J. P., González-Álvarez, V. & Calderón, C. Stability analysis and passivity properties for a class of chemical reactors: Internal entropy production approach. Computers & Chemical Engineering 75, 184–195 (2015) – 10.1016/j.compchemeng.2015.01.021
- Gavalas, (1968)
- Georgakis, C. On the use of extensive variables in process dynamics and control. Chemical Engineering Science 41, 1471–1484 (1986) – 10.1016/0009-2509(86)85232-0
- Hangos, K. M., Alonso, A. A., Perkins, J. D. & Ydstie, B. E. Thermodynamic approach to the structural stability of process plants. AIChE Journal 45, 802–816 (1999) – 10.1002/aic.690450414
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal 47, 1819–1831 (2001) – 10.1002/aic.690470813
- Hangos, Analysis and control of nonlinear process systems. (2004)
- Hioe, D., Bao, J. & Ydstie, B. E. Dissipativity analysis for networks of process systems. Computers & Chemical Engineering 50, 207–219 (2013) – 10.1016/j.compchemeng.2012.11.010
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control 22, 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Hoang, H., Couenne, F., Le Gorrec, Y. & Dochain, D. Thermodynamics based stabilitization of CSTR networks. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 6352–6357 (2012) doi:10.1109/cdc.2012.6427055 – 10.1109/cdc.2012.6427055
- Hoang, N. H., Couenne, F., Jallut, C. & Le Gorrec, Y. Thermodynamics based stability analysis and its use for nonlinear stabilization of the CSTR. Computers & Chemical Engineering 58, 156–177 (2013) – 10.1016/j.compchemeng.2013.06.016
- Hoang, N. H. & Dochain, D. On an evolution criterion of homogeneous multi-component mixtures with chemical transformation. Systems & Control Letters 62, 170–177 (2013) – 10.1016/j.sysconle.2012.11.013
- Hoang, A thermodynamic approach to the passive boundary control of tubular reactors. Nonlinear Control Syst. (2013)
- Isidori, A. Nonlinear Control Systems II. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0549-7 – 10.1007/978-1-4471-0549-7
- Khalil, (2002)
- Kjelstrup, (2010)
- Kondepudi, (1998)
- Kubíček, M. & Marek, M. Computational Methods in Bifurcation Theory and Dissipative Structures. (Springer Berlin Heidelberg, 1983). doi:10.1007/978-3-642-85957-1 – 10.1007/978-3-642-85957-1
- Kurzynski, M. The Thermodynamic Machinery of Life. The Frontiers Collection (Springer Berlin Heidelberg, 2006). doi:10.1007/3-540-33654-0 – 10.1007/3-540-33654-0
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 37, 405–426 (1931) – 10.1103/physrev.37.405
- Onsager, L. Reciprocal Relations in Irreversible Processes. II. Phys. Rev. 38, 2265–2279 (1931) – 10.1103/physrev.38.2265
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Prigogine, (1980)
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rojas, O. J., Bao, J. & Lee, P. L. On dissipativity, passivity and dynamic operability of nonlinear processes. Journal of Process Control 18, 515–526 (2008) – 10.1016/j.jprocont.2007.07.007
- Tarbell, J. M. A thermodynamic Liapunov function for the near equilibrium CSTR. Chemical Engineering Science 32, 1471–1476 (1977) – 10.1016/0009-2509(77)80244-3
- van der Schaft, A., Rao, S. & Jayawardhana, B. Complex and detailed balancing of chemical reaction networks revisited. J Math Chem 53, 1445–1458 (2015) – 10.1007/s10910-015-0498-2
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal. 45, 352–393 (1972) – 10.1007/bf00276494
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering 26, 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters 30, 253–264 (1997) – 10.1016/s0167-6911(97)00023-6