Interconnection and Damping Assignment - Passivity Based Control of Irreversible Port Hamiltonian Systems
Authors
Hector Ramirez, Yann Le Gorrec, Bernhard Maschke
Abstract
Irreversible port Hamiltonian systems are a class of pseudo Hamiltonian systems that expresses both the conservation of energy and the irreversible entropy production as a structural property. These systems encompass a large class of irreversible themordynamic systems, such as heat exchangers and chemical reactors, and also multi-energy systems such as coupled mechanic-thermodynamic systems. In recent work the irreversible port-Hamiltonian formulation has been used to derive a closed-loop stability condition using an energy based availability function, generated by the internal energy, as Lyapunov function. This paper presents an important extension of the previous results: the system theoretic interpretation of the stability condition in terms of conjugated inputs and outputs and the formulation of the control as an interconnection and damping assignment - passivity based control problem. A constructive method to derive the stabilizing control law is proposed and the formalism is illustrated on a general CSTR example.
Keywords
Irreversible port Hamiltonian systems; Passivity based control; Irreversible thermodynamics; Entropy creation; CSTR
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2014
- Volume: 47
- Issue: 3
- Pages: 9111–9116
- Publisher: Elsevier BV
- DOI: 10.3182/20140824-6-za-1003.02388
- Note: 19th IFAC World Congress
BibTeX
@article{Ramirez_2014,
title={{Interconnection and Damping Assignment - Passivity Based Control of Irreversible Port Hamiltonian Systems}},
volume={47},
ISSN={1474-6670},
DOI={10.3182/20140824-6-za-1003.02388},
number={3},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Ramirez, Hector and Gorrec, Yann Le and Maschke, Bernhard},
year={2014},
pages={9111--9116}
}
References
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering 20, S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica 37, 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Aris, (1989)
- Callen, (1985)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems 12, 159–174 (2006) – 10.1080/13873950500068823
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Structured modeling for processes: A thermodynamical network theory. Computers & Chemical Engineering 32, 1120–1134 (2008) – 10.1016/j.compchemeng.2007.04.012
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control 19, 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal 47, 1819–1831 (2001) – 10.1002/aic.690470813
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control 22, 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Jillson, K. R. & Erik Ydstie, B. Process networks with decentralized inventory and flow control. Journal of Process Control 17, 399–413 (2007) – 10.1016/j.jprocont.2006.12.006
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters 57, 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Ramirez, H., Gorrec, Y. L., Maschke, B. & Couenne, F. Passivity Based Control of Irreversible Port Hamiltonian Systems. IFAC Proceedings Volumes 46, 84–89 (2013) – 10.3182/20130714-3-fr-4040.00012
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control 19, 513–520 (2013) – 10.1016/j.ejcon.2013.09.009
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control 19, 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Ydstie, B. E. Passivity based control via the second law. Computers & Chemical Engineering 26, 1037–1048 (2002) – 10.1016/s0098-1354(02)00041-8
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters 30, 253–264 (1997) – 10.1016/s0167-6911(97)00023-6