Boundary control of distributed port-hamiltonian systems via generalised canonical transformations
Authors
Alessandro Macchelli, Yann Le Gorrec, Hector Ramirez
Abstract
This paper presents a novel approach for the development of boundary control laws for a class of linear, distributed port-Hamiltonian systems, with one dimensional spatial domain. The idea is to determine a control action able to map the initial system into a target one, characterised not only by a different Hamiltonian function, but also by new internal dissipative and power-preserving interconnection structures. The methodology consists of two main steps, each associated to a generalised canonical transformation. In the first one, a coordinate change (based on a combination of a linear mapping and a backstepping transformation) is employed to modify the internal structure of the system. Then, in the second step, a generalised canonical transformation capable of properly shaping the Hamiltonian function is introduced. The proposed approach is illustrated with the help of an example, the boundary stabilisation of a lossless transmission line.
Citation
- Journal: 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
- Year: 2017
- Volume:
- Issue:
- Pages: 70–75
- Publisher: IEEE
- DOI: 10.1109/cdc.2017.8263645
BibTeX
@inproceedings{Macchelli_2017,
title={{Boundary control of distributed port-hamiltonian systems via generalised canonical transformations}},
DOI={10.1109/cdc.2017.8263645},
booktitle={{2017 IEEE 56th Annual Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro and Le Gorrec, Yann and Ramirez, Hector},
year={2017},
pages={70--75}
}
References
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Macchelli, A. On the control by interconnection and exponential stabilisation of infinite dimensional port-Hamiltonian systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 3137–3142 (2016) doi:10.1109/cdc.2016.7798739 – 10.1109/cdc.2016.7798739
- Krstic, M. & Smyshlyaev, A. Boundary Control of PDEs. (2008) doi:10.1137/1.9780898718607 – 10.1137/1.9780898718607
- Smyshlyaev, A., Cerpa, E. & Krstic, M. Boundary Stabilization of a 1-D Wave Equation with In-Domain Antidamping. SIAM J. Control Optim. 48, 4014–4031 (2010) – 10.1137/080742646
- Di Meglio, F., Vazquez, R. & Krstic, M. Stabilization of a System of <formula formulatype=”inline”> <tex Notation=”TeX”>$n+1$</tex></formula> Coupled First-Order Hyperbolic Linear PDEs With a Single Boundary Input. IEEE Trans. Automat. Contr. 58, 3097–3111 (2013) – 10.1109/tac.2013.2274723
- Vazquez, R. & Krstic, M. Bilateral boundary control of one-dimensional first- and second-order PDEs using infinite-dimensional backstepping. 2016 IEEE 55th Conference on Decision and Control (CDC) 537–542 (2016) doi:10.1109/cdc.2016.7798324 – 10.1109/cdc.2016.7798324
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- macchelli, Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control 19, 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Nonlinear Control Systems (NOLCOS 1992) Proceedings of the 3rd IFAC Symposium on (1992)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces ser Operator Theory Advances and Applications (2012)
- Hu, L., Di Meglio, F., Vazquez, R. & Krstic, M. Control of Homodirectional and General Heterodirectional Linear Coupled Hyperbolic PDEs. IEEE Trans. Automat. Contr. 61, 3301–3314 (2016) – 10.1109/tac.2015.2512847
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2