On the control by interconnection and exponential stabilisation of infinite dimensional port-Hamiltonian systems
Authors
Abstract
This paper aims at illustrating how the control by interconnection methodology (energy-Casimir method) can be employed in the development of exponentially stabilising boundary control laws for a class of linear, distributed port-Hamiltonian systems with one dimensional spatial domain. The energy-Casimir method is the starting point to determine a state-feedback law able to shape the closed-loop Hamiltonian and achieve simple stability. Then, it is shown how to design a further control loop that guarantees exponential convergence. Thanks to this result, it is possible to overcome a limitation of standard damping injection strategies that, if combined with energy shaping control laws based on energy-balancing, are able to assure, in general, only asymptotic convergence. The methodology is illustrated with the help of a simple example, the boundary stabilisation of a lossless transmission line.
Citation
- Journal: 2016 IEEE 55th Conference on Decision and Control (CDC)
- Year: 2016
- Volume:
- Issue:
- Pages: 3137–3142
- Publisher: IEEE
- DOI: 10.1109/cdc.2016.7798739
BibTeX
@inproceedings{Macchelli_2016,
title={{On the control by interconnection and exponential stabilisation of infinite dimensional port-Hamiltonian systems}},
DOI={10.1109/cdc.2016.7798739},
booktitle={{2016 IEEE 55th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro},
year={2016},
pages={3137--3142}
}
References
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control 19, 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- van der schaft, L2-Gain and Passivity Techniques in Nonlinear Control ser Communication and Control Engineering (2000)
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- macchelli, Asymptotic stabilisation of distributed port-Hamiltonian systems by boundary energy-shaping control. Mathematical Modelling (MATHMOD 2015) Proceedings of the 8th International Conference on (2015)
- Macchelli, A. Boundary Energy-Shaping Control of the Shallow Water Equation. IFAC Proceedings Volumes 47, 1586–1591 (2014) – 10.3182/20140824-6-za-1003.00870
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- van der schaft, Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- macchelli, Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Nonlinear Control Systems (NOLCOS 1992) Proceedings of the 3rd IFAC Symposium on (1992)
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Gorrec, Y. L., Macchelli, A., Ramirez, H. & Zwart, H. Energy shaping of boundary controlled linear port Hamiltonian systems. IFAC Proceedings Volumes 47, 1580–1585 (2014) – 10.3182/20140824-6-za-1003.01966
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters 68, 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, A. Control by interconnection beyond the dissipation obstacle of finite and infinite dimensional port-Hamiltonian systems. 2015 54th IEEE Conference on Decision and Control (CDC) 2489–2494 (2015) doi:10.1109/cdc.2015.7402582 – 10.1109/cdc.2015.7402582
- Macchelli, A., Borja, L. P. & Ortega, R. Control by Interconnection of Distributed Port-Hamiltonian Systems Beyond the Dissipation Obstacle. IFAC-PapersOnLine 48, 99–104 (2015) – 10.1016/j.ifacol.2015.10.221