Stability via closure relations with applications to dissipative and port-Hamiltonian systems
Authors
Jochen Glück, Birgit Jacob, Annika Meyer, Christian Wyss, Hans Zwart
Abstract
We consider differential operators A that can be represented by means of a so-called closure relation in terms of a simpler operator \( A_{ {\text {ext} } } \) defined on a larger space. We analyse how the spectral properties of \( A \) and \( A_{ {\text {ext} } } \) are related and give sufficient conditions for exponential stability of the semigroup generated by \( A \) in terms of the semigroup generated by \( A_{ {\text {ext} } } \). As applications we study the long-term behaviour of a coupled wave–heat system on an interval, parabolic equations on bounded domains that are coupled by matrix-valued potentials, and of linear infinite-dimensional port-Hamiltonian systems with dissipation on an interval.
Keywords
Port-Hamiltonian systems; Closure relations; Exponential stability; \( C_0 \)-semigroups; 93D23; 37K40; 47D06; 34G10
Citation
- Journal: Journal of Evolution Equations
- Year: 2024
- Volume: 24
- Issue: 3
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00028-024-00992-5
BibTeX
@article{Gl_ck_2024,
title={{Stability via closure relations with applications to dissipative and port-Hamiltonian systems}},
volume={24},
ISSN={1424-3202},
DOI={10.1007/s00028-024-00992-5},
number={3},
journal={Journal of Evolution Equations},
publisher={Springer Science and Business Media LLC},
author={Glück, Jochen and Jacob, Birgit and Meyer, Annika and Wyss, Christian and Zwart, Hans},
year={2024}
}
References
- Arendt, W. Chapter 1 Semigroups and evolution equations: Functional calculus, regularity and kernel estimates. Handbook of Differential Equations: Evolutionary Equations 1–85 (2002) doi:10.1016/s1874-5717(04)80003-3 – 10.1016/s1874-5717(04)80003-3
- B. Augner. Stabilisation of Infinite-dimensional Port-Hamiltonian System. PhD thesis, University of Wuppertal, 2016.
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Batty, C., Paunonen, L. & Seifert, D. Optimal energy decay in a one-dimensional coupled wave–heat system. Journal of Evolution Equations vol. 16 649–664 (2016) – 10.1007/s00028-015-0316-0
- Batty, C., Paunonen, L. & Seifert, D. Optimal Energy Decay for the Wave-Heat System on a Rectangular Domain. SIAM Journal on Mathematical Analysis vol. 51 808–819 (2019) – 10.1137/18m1195796
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. Dissipative Shallow Water Equations: a port-Hamiltonian formulation. IFAC-PapersOnLine vol. 54 167–172 (2021) – 10.1016/j.ifacol.2021.11.073
- Daners, D. Robin boundary value problems on arbitrary domains. Transactions of the American Mathematical Society vol. 352 4207–4236 (2000) – 10.1090/s0002-9947-00-02444-2
- Daners, D., Glück, J. & Kennedy, J. B. Eventually and asymptotically positive semigroups on Banach lattices. Journal of Differential Equations vol. 261 2607–2649 (2016) – 10.1016/j.jde.2016.05.007
- R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods for science and technology. Vol. 5: Evolution problems I. With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon. Transl. from the French by Alan Craig. Translation editor: Ian N. Sneddon. Berlin: Springer, 2nd printing edition, 2000.
- Dobrick, A. & Glück, J. Convergence to equilibrium for linear parabolic systems coupled by matrix‐valued potentials. Mathematische Nachrichten vol. 297 577–594 (2023) – 10.1002/mana.202300087
- V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, editors. Modeling and Control of Complex Physical Systems. Springer-Verlag, Berlin, 2009. (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- K-J Engel. K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Grad. Texts Math. Berlin: Springer, 2000. (2000)
- LC Evans. L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. (2010)
- Guidotti, P. & Merino, S. Hopf Bifurcation in a Scalar Reaction Diffusion Equation. Journal of Differential Equations vol. 140 209–222 (1997) – 10.1006/jdeq.1997.3307
- Humaloja, J.-P. & Paunonen, L. Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1480–1486 (2018) – 10.1109/tac.2017.2748055
- Jacob, B. & Kaiser, J. T. On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 3 661–666 (2019) – 10.1109/lcsys.2019.2916814
- Jacob, B. & Skrepek, N. Stability of the multidimensional wave equation in port-Hamiltonian modelling. 2021 60th IEEE Conference on Decision and Control (CDC) 6188–6193 (2021) doi:10.1109/cdc45484.2021.9683501 – 10.1109/cdc45484.2021.9683501
- Jacob, B. & Zwart, H. An operator theoretic approach to infinite‐dimensional control systems. GAMM-Mitteilungen vol. 41 (2018) – 10.1002/gamm.201800010
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Jäschke, J., Ehrhardt, M., Günther, M. & Jacob, B. A port-Hamiltonian formulation of coupled heat transfer. Mathematical and Computer Modelling of Dynamical Systems vol. 28 78–94 (2022) – 10.1080/13873954.2022.2038637
- T. Kato. Perturbation theory for linear operators. Corr. printing of the 2nd ed, volume 132 of Grundlehren Math. Wiss. Springer, Cham, 1980.
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- R. Nagel, editor. One-parameter semigroups of positive operators, volume 1184 of Lect. Notes Math. Springer, Cham, 1986. (1986)
- Ng, A. C. S. Optimal Energy Decay in a One-Dimensional Wave-Heat-Wave System. Springer Proceedings in Mathematics & Statistics 293–314 (2020) doi:10.1007/978-3-030-46079-2_17 – 10.1007/978-3-030-46079-2_17
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Reis, T. Some notes on port-Hamiltonian systems on Banach spaces. IFAC-PapersOnLine vol. 54 223–229 (2021) – 10.1016/j.ifacol.2021.11.082
- Schmid, J. Stabilization of port-Hamiltonian systems with discontinuous energy densities. Evolution Equations and Control Theory vol. 11 1775 (2022) – 10.3934/eect.2021063
- J Schmid. J. Schmid and H. Zwart. Stabilization of port-hamiltonian systems by nonlinear boundary control in the presence of disturbances. ESAIM: Control, Optimisation & Calculus of Variations, 26:1 – 37, 2021. (2021)
- Schwenninger, F. L. & Zwart, H. Generators with a closure relation. Operators and Matrices 157–165 (2014) doi:10.7153/oam-08-08 – 10.7153/oam-08-08
- Skrepek, N. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory vol. 10 965 (2021) – 10.3934/eect.2020098
- S. Trostorff and M. Waurick. Characterisation for exponential stability of port-Hamiltonian systems, 2022.
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- J. Villegas. A Port-Hamiltonian Approach to Distributed Parameter Systems. PhD thesis, University of Twente, Netherlands, 2007.
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- M. Waurick and H. Zwart. Asymptotic stability of port-Hamiltonian systems. 2022. Preprint, available at arXiv:2210.11775.
- Zhou, W., Hamroun, B., Gorrec, Y. L. & Couenne, F. Infinite Dimensional Port Hamiltonian Representation of reaction diffusion processes. IFAC-PapersOnLine vol. 48 476–481 (2015) – 10.1016/j.ifacol.2015.05.119
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036