Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems
Authors
Jukka-Pekka Humaloja, Lassi Paunonen
Abstract
We will give general sufficient conditions under which a controller achieves robust regulation for a boundary control and observation system. Utilizing these conditions, we construct a minimal-order robust controller for an arbitrary order impedance passive linear port-Hamiltonian system. The theoretical results are illustrated with a numerical example where we implement a controller for a 1-D Euler–Bernoulli beam with boundary controls and boundary observations.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2018
- Volume: 63
- Issue: 5
- Pages: 1480–1486
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2017.2748055
BibTeX
@article{Humaloja_2018,
title={{Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems}},
volume={63},
ISSN={2334-3303},
DOI={10.1109/tac.2017.2748055},
number={5},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Humaloja, Jukka-Pekka and Paunonen, Lassi},
year={2018},
pages={1480--1486}
}
References
- Humaloja, J.-P., Paunonen, L. & Pohjolainen, S. Robust regulation for first-order port-hamiltonian systems. 2016 European Control Conference (ECC) 2203–2208 (2016) doi:10.1109/ecc.2016.7810618 – 10.1109/ecc.2016.7810618
- humaloja, Robust regulation for port-Hamiltonian systems of even order. Proc Int Symp Math Theory Netw Syst (2016)
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Rebarber, R. & Weiss, G. Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica vol. 39 1555–1569 (2003) – 10.1016/s0005-1098(03)00192-4
- Tucsnak, M. & Weiss, G. Observation and Control for Operator Semigroups. (Birkhäuser Basel, 2009). doi:10.1007/978-3-7643-8994-9 – 10.1007/978-3-7643-8994-9
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Phóng, V. Q. The operator equationAX−XB=C with unbounded operatorsA andB and related abstract Cauchy problems. Mathematische Zeitschrift vol. 208 567–588 (1991) – 10.1007/bf02571546
- Davison, E. Multivariable tuning regulators: The feedforward and robust control of a general servomechanism problem. 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes 180–187 (1975) doi:10.1109/cdc.1975.270674 – 10.1109/cdc.1975.270674
- augner, Stabilization of infinite-dimensional port-Hamiltonian systems via dissipative boundary feedback. (2016)
- hämäläinen, Robust regulation for exponentially stable boundary control systems in Hilbert space. Proc Int Conf Methods Models Autom Robot (2002)
- Hamalainen, T. & Pohjolainen, S. A finite-dimensional robust controller for systems in the CD-algebra. IEEE Transactions on Automatic Control vol. 45 421–431 (2000) – 10.1109/9.847722
- Paunonen, L. & Pohjolainen, S. Internal Model Theory for Distributed Parameter Systems. SIAM Journal on Control and Optimization vol. 48 4753–4775 (2010) – 10.1137/090760957
- Hämäläinen, T. & Pohjolainen, S. Robust Regulation of Distributed Parameter Systems with Infinite-Dimensional Exosystems. SIAM Journal on Control and Optimization vol. 48 4846–4873 (2010) – 10.1137/090757976
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Paunonen, L. & Pohjolainen, S. The Internal Model Principle for Systems with Unbounded Control and Observation. SIAM Journal on Control and Optimization vol. 52 3967–4000 (2014) – 10.1137/130921362
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Hamalainen, T. & Pohjolainen, S. A Self-Tuning Robust Regulator for Infinite-Dimensional Systems. IEEE Transactions on Automatic Control vol. 56 2116–2127 (2011) – 10.1109/tac.2011.2129310
- Paunonen, L. Controller Design for Robust Output Regulation of Regular Linear Systems. IEEE Transactions on Automatic Control vol. 61 2974–2986 (2016) – 10.1109/tac.2015.2509439