Stability analysis of repetitive control: The port-Hamiltonian approach
Authors
Federico Califano, Alessandro Macchelli, Claudio Melchiorri
Abstract
This paper deals with two different topics that, at a first sight, could look quite unrelated. The first one is about repetitive control: the scope is to determine a class of linear systems for which such control technique can be successfully applied, i.e. the resulting closed-loop system is stable. In repetitive control schemes, coupled PDEs and ODEs are present, and the idea is to rely on a port-Hamiltonian formulation, and on the properties of passive/dissipative systems to study the behaviour of the closed-loop dynamic. To perform this analysis, novel results dealing with the exponential stabilisation of linear boundary control system with one-dimensional spatial domain in port-Hamiltonian form via finite dimensional linear controllers are presented. This is in fact the second topic discussed in this paper, and the achieved results are applied in order to characterise a class of linear systems for which repetitive control schemes exponentially converge.
Citation
- Journal: 2017 IEEE 56th Annual Conference on Decision and Control (CDC)
- Year: 2017
- Volume:
- Issue:
- Pages: 1894–1899
- Publisher: IEEE
- DOI: 10.1109/cdc.2017.8263926
BibTeX
@inproceedings{Califano_2017,
title={{Stability analysis of repetitive control: The port-Hamiltonian approach}},
DOI={10.1109/cdc.2017.8263926},
booktitle={{2017 IEEE 56th Annual Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Califano, Federico and Macchelli, Alessandro and Melchiorri, Claudio},
year={2017},
pages={1894--1899}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- macchelli, Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control 19, 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces ser Operator Theory Advances and Applications (2012)
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control 6, 349–385 (1968) – 10.1137/0306025
- Hara, S., Yamamoto, Y., Omata, T. & Nakano, M. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Contr. 33, 659–668 (1988) – 10.1109/9.1274
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- inoue, High accuracy control of servomechanism for repeated contouring. Proc Annual Symp Incremental Motion Control Systems Devices (1981)
- Inoue, T., Nakano, M., Kubo, T., Matsumoto, S. & Baba, H. High Accuracy Control of a Proton Synchrotron Magnet Power Supply. IFAC Proceedings Volumes 14, 3137–3142 (1981) – 10.1016/s1474-6670(17)63938-7
- maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Nonlinear Control Systems (NOLCOS 1992) Proceedings of the 3rd IFAC Symposium on (1992)