Reinforcement learning event-triggered energy-based control for unmanned surface vessel with disturbances
Authors
Chengxing Lv, Ying Zhang, Zichen Wang, Jian Chen, Zhibo Yang, Haisheng Yu
Abstract
This paper proposes a novel event-triggered energy-based controller for Unmanned Surface Vessels (USVs) operating in complex scenarios, integrating reinforcement learning techniques with an energy-based framework. Model uncertainties are captured via actor-critic neural networks (NNs), where actor NNs generate control actions and critic NNs assess their performance. To address disturbances, a self-learning nonlinear disturbance observer with an adaptive learning factor is developed, enhancing the accuracy of disturbance estimation. A state-error port-controlled Hamiltonian (PCH) strategy ensures trajectory tracking, complemented by variable damping techniques to optimize the closed-loop system’s dynamic response. The design incorporates event-triggered mechanisms and adaptive control methods to ensure boundedness of all closed-loop signals. Stability analysis demonstrates convergence of the tracking error to a neighborhood of the origin, and simulation results validate the controller’s feasibility and efficacy.
Keywords
Actor-critic neural networks; Event-triggered mechanism; Unmanned surface vessel; Energy based framework
Citation
- Journal: Ocean Engineering
- Year: 2025
- Volume: 329
- Issue:
- Pages: 121132
- Publisher: Elsevier BV
- DOI: 10.1016/j.oceaneng.2025.121132
BibTeX
@article{Lv_2025,
title={{Reinforcement learning event-triggered energy-based control for unmanned surface vessel with disturbances}},
volume={329},
ISSN={0029-8018},
DOI={10.1016/j.oceaneng.2025.121132},
journal={Ocean Engineering},
publisher={Elsevier BV},
author={Lv, Chengxing and Zhang, Ying and Wang, Zichen and Chen, Jian and Yang, Zhibo and Yu, Haisheng},
year={2025},
pages={121132}
}
References
- Abdelaal, M., Fränzle, M. & Hahn, A. Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances. Ocean Engineering vol. 160 168–180 (2018) – 10.1016/j.oceaneng.2018.04.026
- Bu, X. Prescribed performance control approaches, applications and challenges: A comprehensive survey. Asian Journal of Control vol. 25 241–261 (2022) – 10.1002/asjc.2765
- Chen, J., Hu, X., Lv, C., Zhang, Z. & Ma, R. Adaptive event-triggered fuzzy tracking control for underactuated surface vehicles under external disturbances. Ocean Engineering vol. 283 115026 (2023) – 10.1016/j.oceaneng.2023.115026
- Chen, Adaptive fault estimation for unmanned surface vessels with a neural network observer approach. IEEE Trans. Circuits Syst. I (2021)
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Fossen, (2011)
- Gonzalez-Garcia, A. & Castaneda, H. Guidance and Control Based on Adaptive Sliding Mode Strategy for a USV Subject to Uncertainties. IEEE Journal of Oceanic Engineering vol. 46 1144–1154 (2021) – 10.1109/joe.2021.3059210
- Gonzalez-Garcia, A. et al. Path-following and LiDAR-based obstacle avoidance via NMPC for an autonomous surface vehicle. Ocean Engineering vol. 266 112900 (2022) – 10.1016/j.oceaneng.2022.112900
- Gu, N., Wang, D., Peng, Z., Wang, J. & Han, Q.-L. Disturbance observers and extended state observers for marine vehicles: A survey. Control Engineering Practice vol. 123 105158 (2022) – 10.1016/j.conengprac.2022.105158
- Li, Y., Li, X., Wei, X. & Wang, H. Sim-real joint experimental verification for an unmanned surface vehicle formation strategy based on multi-agent deterministic policy gradient and line of sight guidance. Ocean Engineering vol. 270 113661 (2023) – 10.1016/j.oceaneng.2023.113661
- Liu, Z., Zhang, Y., Yu, X. & Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control vol. 41 71–93 (2016) – 10.1016/j.arcontrol.2016.04.018
- Lv, C., Wang, Z., Zhang, Y., Chen, J. & Yu, H. Cooperative formation control of multiple unmanned surface vessels based on state error port control Hamiltonian framework. Ocean Engineering vol. 313 119410 (2024) – 10.1016/j.oceaneng.2024.119410
- Lv, C., Yu, H., Chen, J., Zhao, N. & Chi, J. Trajectory tracking control for unmanned surface vessel with input saturation and disturbances via robust state error IDA-PBC approach. Journal of the Franklin Institute vol. 359 1899–1924 (2022) – 10.1016/j.jfranklin.2022.01.036
- Lv, C. et al. A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Engineering vol. 176 222–230 (2019) – 10.1016/j.oceaneng.2019.02.007
- Lv, C. et al. Robust state‐error port‐controlled Hamiltonian trajectory tracking control for unmanned surface vehicle with disturbance uncertainties. Asian Journal of Control vol. 24 320–332 (2020) – 10.1002/asjc.2467
- Lv, C., Chen, J., Yu, H., Chi, J. & Yang, Z. Adaptive NN state error PCH trajectory tracking control for unmanned surface vessel with uncertainties and input saturation. Asian Journal of Control vol. 25 3903–3919 (2023) – 10.1002/asjc.3076
- Ma, R., Chen, J., Lv, C., Yang, Z. & Hu, X. Backstepping Control with a Fractional-Order Command Filter and Disturbance Observer for Unmanned Surface Vehicles. Fractal and Fractional vol. 8 23 (2023) – 10.3390/fractalfract8010023
- Martinsen, A. B., Lekkas, A. M. & Gros, S. Reinforcement learning-based NMPC for tracking control of ASVs: Theory and experiments. Control Engineering Practice vol. 120 105024 (2022) – 10.1016/j.conengprac.2021.105024
- Meng, X., Yu, H. & Zhang, J. An EPCH Control Strategy for Complex Nonlinear Systems with Actuator Saturation and Disturbances. Information Sciences vol. 625 639–655 (2023) – 10.1016/j.ins.2023.01.005
- Van, M., Mavrovouniotis, M. & Ge, S. S. An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 49 1448–1458 (2019) – 10.1109/tsmc.2017.2782246
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- PENG, C., MA, J. & LIU, X. An online data driven actor-critic-disturbance guidance law for missile-target interception with input constraints. Chinese Journal of Aeronautics vol. 35 144–156 (2022) – 10.1016/j.cja.2021.11.018
- Ren, Data-based H∞ control for the constrained-input nonlinear systems and its applications in chaotic circuit systems. IEEE Trans. Circuits Syst. I (2020)
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Touzout, W., Benmoussa, Y., Benazzouz, D., Moreac, E. & Diguet, J.-P. Unmanned surface vehicle energy consumption modelling under various realistic disturbances integrated into simulation environment. Ocean Engineering vol. 222 108560 (2021) – 10.1016/j.oceaneng.2020.108560
- Vu, V. T., Tran, Q. H., Pham, T. L. & Dao, P. N. Online Actor-critic Reinforcement Learning Control for Uncertain Surface Vessel Systems with External Disturbances. International Journal of Control, Automation and Systems vol. 20 1029–1040 (2022) – 10.1007/s12555-020-0809-7
- Wang, M. & Wang, L. Finite-time performance guaranteed event-triggered adaptive control for nonlinear systems with unknown control direction. Journal of the Franklin Institute vol. 359 2463–2486 (2022) – 10.1016/j.jfranklin.2022.02.003
- Wang, N., Gao, Y., Liu, Y. & Li, K. Self‐learning‐based optimal tracking control of an unmanned surface vehicle with pose and velocity constraints. International Journal of Robust and Nonlinear Control vol. 32 2950–2968 (2022) – 10.1002/rnc.5978
- Wei, Z. & Du, J. Reinforcement learning-based trajectory tracking optimal control of unmanned surface vehicles in narrow water areas. ISA Transactions vol. 159 152–164 (2025) – 10.1016/j.isatra.2025.01.045
- Wen, G., Ge, S. S., Chen, C. L. P., Tu, F. & Wang, S. Adaptive Tracking Control of Surface Vessel Using Optimized Backstepping Technique. IEEE Transactions on Cybernetics vol. 49 3420–3431 (2019) – 10.1109/tcyb.2018.2844177
- Zheng, Z. Moving path following control for a surface vessel with error constraint. Automatica vol. 118 109040 (2020) – 10.1016/j.automatica.2020.109040
- Zheng, Z., Ruan, L., Zhu, M. & Guo, X. Reinforcement learning control for underactuated surface vessel with output error constraints and uncertainties. Neurocomputing vol. 399 479–490 (2020) – 10.1016/j.neucom.2020.03.021
- Zhou, W., Xu, Z., Wu, Y., Xiang, J. & Li, Y. Energy-based trajectory tracking control of under-actuated unmanned surface vessels. Ocean Engineering vol. 288 116166 (2023) – 10.1016/j.oceaneng.2023.116166
- Zhu, G., Du, J. & Kao, Y. Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints. Journal of the Franklin Institute vol. 357 8591–8610 (2020) – 10.1016/j.jfranklin.2020.06.010