Energy-based trajectory tracking control of under-actuated unmanned surface vessels
Authors
Weijun Zhou, Zishi Xu, Yongxin Wu, Ji Xiang, Yanjun Li
Abstract
In this paper, a novel energy-based trajectory tracking control strategy for under-actuated unmanned surface vessels (USVs) in the presence of unknown environmental disturbances is presented. The port-Hamiltonian framework is utilized to propose a passivity-based control model in body-fixed coordinates of the USVs. An adaptive disturbance estimation method is detailed and used to accurately estimate the environmental disturbances affecting USV motion. Furthermore, a passive and Hamiltonian structure-preserving controller is employed to achieve the desired trajectory of the USV system, and the stability of the desired target dynamic system is rigorously proven. The effectiveness of the proposed controller is demonstrated through simulations and experiments on a USV experimental platform, showcasing its capability of trajectory tracking performance and mitigating the effects of disturbances.
Keywords
Energy based control; Port-Hamiltonian system; Trajectory tracking control; Under-actuated USV
Citation
- Journal: Ocean Engineering
- Year: 2023
- Volume: 288
- Issue:
- Pages: 116166
- Publisher: Elsevier BV
- DOI: 10.1016/j.oceaneng.2023.116166
BibTeX
@article{Zhou_2023,
title={{Energy-based trajectory tracking control of under-actuated unmanned surface vessels}},
volume={288},
ISSN={0029-8018},
DOI={10.1016/j.oceaneng.2023.116166},
journal={Ocean Engineering},
publisher={Elsevier BV},
author={Zhou, Weijun and Xu, Zishi and Wu, Yongxin and Xiang, Ji and Li, Yanjun},
year={2023},
pages={116166}
}
References
- Aguiar, A. P. & Hespanha, J. P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty. IEEE Transactions on Automatic Control vol. 52 1362–1379 (2007) – 10.1109/tac.2007.902731
- Ashrafiuon, H., Muske, K. R., McNinch, L. C. & Soltan, R. A. Sliding-Mode Tracking Control of Surface Vessels. IEEE Transactions on Industrial Electronics vol. 55 4004–4012 (2008) – 10.1109/tie.2008.2005933
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control vol. 48 590–606 (2003) – 10.1109/tac.2003.809820
- Ayala, E. P., Wu, Y., Rabenorosoa, K. & Le Gorrec, Y. Energy-Based Modeling and Control of a Piezotube Actuated Optical Fiber. IEEE/ASME Transactions on Mechatronics vol. 28 385–395 (2023) – 10.1109/tmech.2022.3199566
- Chwa, D. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Transactions on Control Systems Technology vol. 19 1357–1370 (2011) – 10.1109/tcst.2010.2090526
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Dong, Z., Wan, L., Li, Y., Liu, T. & Zhang, G. Trajectory tracking control of underactuated USV based on modified backstepping approach. International Journal of Naval Architecture and Ocean Engineering vol. 7 817–832 (2015) – 10.1515/ijnaoe-2015-0058
- Fossen, (1999)
- Fossen, (2002)
- Fossen, T. I. & Blanke, M. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity. IEEE Journal of Oceanic Engineering vol. 25 241–255 (2000) – 10.1109/48.838987
- Fossen, T. I., Breivik, M. & Skjetne, R. Line-of-sight path following of underactuated marine craft. IFAC Proceedings Volumes vol. 36 211–216 (2003) – 10.1016/s1474-6670(17)37809-6
- Ghommam, J., Mnif, F., Benali, A. & Derbel, N. Asymptotic Backstepping Stabilization of an Underactuated Surface Vessel. IEEE Transactions on Control Systems Technology vol. 14 1150–1157 (2006) – 10.1109/tcst.2006.880220
- He, S., Kou, L., Li, Y. & Xiang, J. Robust Orientation-Sensitive Trajectory Tracking of Underactuated Autonomous Underwater Vehicles. IEEE Transactions on Industrial Electronics vol. 68 8464–8473 (2021) – 10.1109/tie.2020.3013790
- He, S., Kou, L., Li, Y. & Xiang, J. Position Tracking Control of Fully-Actuated Underwater Vehicles With Constrained Attitude and Velocities. IEEE Transactions on Industrial Electronics vol. 69 13192–13202 (2022) – 10.1109/tie.2022.3140516
- Lefeber, E., Pettersen, K. Y. & Nijmeijer, H. Tracking control of an underactuated ship. IEEE Transactions on Control Systems Technology vol. 11 52–61 (2003) – 10.1109/tcst.2002.806465
- Liu, N., Wu, Y. & Le Gorrec, Y. Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures. IEEE/ASME Transactions on Mechatronics vol. 26 3139–3150 (2021) – 10.1109/tmech.2021.3053609
- Lv, C. et al. A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Engineering vol. 176 222–230 (2019) – 10.1016/j.oceaneng.2019.02.007
- Lv, C. et al. Robust state‐error port‐controlled Hamiltonian trajectory tracking control for unmanned surface vehicle with disturbance uncertainties. Asian Journal of Control vol. 24 320–332 (2020) – 10.1002/asjc.2467
- Mattioni, A., Wu, Y., Ramirez, H., Le Gorrec, Y. & Macchelli, A. Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltonian approach. Control Engineering Practice vol. 101 104498 (2020) – 10.1016/j.conengprac.2020.104498
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Perez, T., Donaire, A., Renton, C. & Valentinis, F. Energy-based Motion Control of Marine Vehicles using Interconnection and Damping Assignment Passivity-based Control – A Survey. IFAC Proceedings Volumes vol. 46 316–327 (2013) – 10.3182/20130918-4-jp-3022.00072
- Reyes-Báez, Tracking control of marine craft in the port-Hamiltonian framework: A virtual differential passivity approach. (2019)
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Sarhadi, P., Noei, A. R. & Khosravi, A. Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robotics and Autonomous Systems vol. 83 87–93 (2016) – 10.1016/j.robot.2016.05.016
- van der Schaft, (2000)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Xu, Trajectory tracking control for differential-driven unmanned surface vessels considering propeller servo loop. IEEE Trans. Ind. Inform. (2023)
- Yeh, Y., Cisneros, N., Wu, Y., Rabenorosoa, K. & Gorrec, Y. L. Modeling and Position Control of the HASEL Actuator via Port-Hamiltonian Approach. IEEE Robotics and Automation Letters vol. 7 7100–7107 (2022) – 10.1109/lra.2022.3181365
- Zhou, W., Wu, Y., Hu, H., Li, Y. & Wang, Y. Port-Hamiltonian Modeling and IDA-PBC Control of an IPMC-Actuated Flexible Beam. Actuators vol. 10 236 (2021) – 10.3390/act10090236