Robust state‐error port‐controlled Hamiltonian trajectory tracking control for unmanned surface vehicle with disturbance uncertainties
Authors
Chengxing Lv, Haisheng Yu, Na Zhao, Jieru Chi, Hailin Liu, Lei Li
Abstract
This paper proposed a novel disturbance observer‐based control state‐error port‐controlled Hamiltonian (DOBC‐SEPCH) control strategy for optimization of energy consumption and enhancement of tracking performance for unmanned surface vehicle (USV) with unknown environmental disturbances via the PCH system techniques. Firstly, an observer is constructed to estimate disturbances. Then, an energy‐based controller is constructed by using the SEPCH system method. In addition, the SEPCH controller provided that the tracking errors converged exponentially to zero. The SEPCH technique is augmented by a disturbance observer. Due to the controller need to be designed in two stages, the stability of the whole system will be difficult to be discussed. We give the proof of the stability of the desired target dynamic system. The robustness and control performance of the system are enhanced. The simulation and comparison results illustrate the performance of this controller.
Citation
- Journal: Asian Journal of Control
- Year: 2022
- Volume: 24
- Issue: 1
- Pages: 320–332
- Publisher: Wiley
- DOI: 10.1002/asjc.2467
BibTeX
@article{Lv_2020,
title={{Robust state‐error port‐controlled Hamiltonian trajectory tracking control for unmanned surface vehicle with disturbance uncertainties}},
volume={24},
ISSN={1934-6093},
DOI={10.1002/asjc.2467},
number={1},
journal={Asian Journal of Control},
publisher={Wiley},
author={Lv, Chengxing and Yu, Haisheng and Zhao, Na and Chi, Jieru and Liu, Hailin and Li, Lei},
year={2020},
pages={320--332}
}
References
- Liu, Z., Zhang, Y., Yu, X. & Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control vol. 41 71–93 (2016) – 10.1016/j.arcontrol.2016.04.018
- Zheng, Z., Jin, C., Zhu, M. & Sun, K. Trajectory tracking control for a marine surface vessel with asymmetric saturation actuators. Robotics and Autonomous Systems vol. 97 83–91 (2017) – 10.1016/j.robot.2017.08.005
- Li, J.-H. Path tracking of underactuated ships with general form of dynamics. International Journal of Control vol. 89 506–517 (2015) – 10.1080/00207179.2015.1083123
- Campbell, S., Naeem, W. & Irwin, G. W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control vol. 36 267–283 (2012) – 10.1016/j.arcontrol.2012.09.008
- Yu, Y., Guo, C. & Yu, H. Finite-Time PLOS-Based Integral Sliding-Mode Adaptive Neural Path Following for Unmanned Surface Vessels With Unknown Dynamics and Disturbances. IEEE Transactions on Automation Science and Engineering vol. 16 1500–1511 (2019) – 10.1109/tase.2019.2925657
- Ye, L. & Zong, Q. Tracking control of an underactuated ship by modified dynamic inversion. ISA Transactions vol. 83 100–106 (2018) – 10.1016/j.isatra.2018.09.007
- Lv, C. et al. State Error PCH Trajectory Tracking Control of an Unmanned Surface Vehicle. 2018 Chinese Automation Congress (CAC) 3908–3912 (2018) doi:10.1109/cac.2018.8623755 – 10.1109/cac.2018.8623755
- Chen, Y., Yu, S., Shen, Z. & Guo, G. Cooperative tracking of vessel trajectories based on curved dynamic coordinates. Asian Journal of Control vol. 21 2451–2467 (2018) – 10.1002/asjc.2002
- Soltan, R. A., Ashrafiuon, H. & Muske, K. R. State-dependent trajectory planning and tracking control of unmanned surface vessels. 2009 American Control Conference 3597–3602 (2009) doi:10.1109/acc.2009.5160010 – 10.1109/acc.2009.5160010
- Ashrafiuon, H., Muske, K. R., McNinch, L. C. & Soltan, R. A. Sliding-Mode Tracking Control of Surface Vessels. IEEE Transactions on Industrial Electronics vol. 55 4004–4012 (2008) – 10.1109/tie.2008.2005933
- Liu, C., Zou, Z. & Hou, X. Stabilization And Tracking Of Underactuated Surface Vessels In Random Waves With Fin Based On Adaptive Hierarchical Sliding Mode Technique. Asian Journal of Control vol. 16 1492–1500 (2014) – 10.1002/asjc.920
- Sonnenburg, C. R. & Woolsey, C. A. Modeling, Identification, and Control of an Unmanned Surface Vehicle. Journal of Field Robotics vol. 30 371–398 (2013) – 10.1002/rob.21452
- Sonnenburg, C. et al. Control-Oriented Planar Motion Modeling of Unmanned Surface Vehicles. OCEANS 2010 MTS/IEEE SEATTLE 1–10 (2010) doi:10.1109/oceans.2010.5664297 – 10.1109/oceans.2010.5664297
- Klinger, W. B., Bertaska, I. R., von Ellenrieder, K. D. & Dhanak, M. R. Control of an Unmanned Surface Vehicle With Uncertain Displacement and Drag. IEEE Journal of Oceanic Engineering vol. 42 458–476 (2017) – 10.1109/joe.2016.2571158
- Jin, J., Zhang, J. & Liu, D. Design and Verification of Heading and Velocity Coupled Nonlinear Controller for Unmanned Surface Vehicle. Sensors vol. 18 3427 (2018) – 10.3390/s18103427
- Van, M. Adaptive neural integral sliding‐mode control for tracking control of fully actuated uncertain surface vessels. International Journal of Robust and Nonlinear Control vol. 29 1537–1557 (2019) – 10.1002/rnc.4455
- Qiu, B., Wang, G., Fan, Y., Mu, D. & Sun, X. Robust Adaptive Trajectory Linearization Control for Tracking Control of Surface Vessels With Modeling Uncertainties Under Input Saturation. IEEE Access vol. 7 5057–5070 (2019) – 10.1109/access.2018.2889721
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics vol. 56 900–906 (2009) – 10.1109/tie.2008.2011621
- F.Chen H.Xiong andJ.Fu The control and simulation for the ADRC of USV 2015 Chinese Automation Congress (CAC) IEEE Wuhan China 2015 pp.416–421.
- Changshun, W., Huang, Z. & Yu, Y. USV trajectory tracking control system based on ADRC. 2017 Chinese Automation Congress (CAC) 7534–7538 (2017) doi:10.1109/cac.2017.8244141 – 10.1109/cac.2017.8244141
- Lamraoui, H. C. & Qidan, Z. Path following control of fully-actuated autonomous underwater vehicle in presence of fast-varying disturbances. Applied Ocean Research vol. 86 40–46 (2019) – 10.1016/j.apor.2019.02.015
- Guo, L. & Chen, W.-H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control vol. 15 109–125 (2005) – 10.1002/rnc.978
- Guo, L. & Cao, S. Anti-disturbance control theory for systems with multiple disturbances: A survey. ISA Transactions vol. 53 846–849 (2014) – 10.1016/j.isatra.2013.10.005
- Aboudonia, A., Rashad, R. & El-Badawy, A. Composite Hierarchical Anti-Disturbance Control of a Quadrotor UAV in the Presence of Matched and Mismatched Disturbances. Journal of Intelligent & Robotic Systems vol. 90 201–216 (2017) – 10.1007/s10846-017-0662-y
- Wan, L. et al. Neural observer-based path following control for underactuated unmanned surface vessels with input saturation and time-varying disturbance. International Journal of Advanced Robotic Systems vol. 16 (2019) – 10.1177/1729881419878071
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Perez, T., Donaire, A., Renton, C. & Valentinis, F. Energy-based Motion Control of Marine Vehicles using Interconnection and Damping Assignment Passivity-based Control – A Survey. IFAC Proceedings Volumes vol. 46 316–327 (2013) – 10.3182/20130918-4-jp-3022.00072
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dynamics vol. 72 49–59 (2012) – 10.1007/s11071-012-0689-3
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Lv, C., Yu, H., Hua, Z., Li, L. & Chi, J. Speed and Heading Control of an Unmanned Surface Vehicle Based on State Error PCH Principle. Mathematical Problems in Engineering vol. 2018 1–9 (2018) – 10.1155/2018/7371829
- Lv, C., Yu, H., Chi, J. & Xu, T. Speed and heading control of unmanned surface vehicle based on IDA-PBC and L2 gain disturbance attenuation approach. 2018 Chinese Control And Decision Conference (CCDC) 1704–1708 (2018) doi:10.1109/ccdc.2018.8407402 – 10.1109/ccdc.2018.8407402
- Lv, C. et al. A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Engineering vol. 176 222–230 (2019) – 10.1016/j.oceaneng.2019.02.007
- Liu, X., Yu, H., Yu, J. & Zhao, Y. A Novel Speed Control Method Based on Port-Controlled Hamiltonian and Disturbance Observer for PMSM Drives. IEEE Access vol. 7 111115–111123 (2019) – 10.1109/access.2019.2934987
- Fossen T. I.. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (2002)
- Fossen T. I.. Guidance and Control of Ocean Vehicles (1994)
- Yu, R., Zhu, Q., Xia, G. & Liu, Z. Sliding mode tracking control of an underactuated surface vessel. IET Control Theory & Applications vol. 6 461–466 (2012) – 10.1049/iet-cta.2011.0176
- Do, K. D. & Pan, J. Global robust adaptive path following of underactuated ships. Automatica vol. 42 1713–1722 (2006) – 10.1016/j.automatica.2006.04.026
- Yang, Y., Du, J., Liu, H., Guo, C. & Abraham, A. A Trajectory Tracking Robust Controller of Surface Vessels With Disturbance Uncertainties. IEEE Transactions on Control Systems Technology vol. 22 1511–1518 (2014) – 10.1109/tcst.2013.2281936
- Do, K. D. Practical control of underactuated ships. Ocean Engineering vol. 37 1111–1119 (2010) – 10.1016/j.oceaneng.2010.04.007
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Renton, C. & Perez, T. Manoeuvring Control of Underactuated Surface Vessels using Manifold Regulation for Port-Hamiltonian Systems. IFAC Proceedings Volumes vol. 45 422–428 (2012) – 10.3182/20120919-3-it-2046.00072
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Hamayun, M. T., Edwards, C. & Alwi, H. Design and Analysis of an Integral Sliding Mode Fault-Tolerant Control Scheme. IEEE Transactions on Automatic Control vol. 57 1783–1789 (2012) – 10.1109/tac.2011.2180090