Authors

Chengxing Lv, Jian Chen, Haisheng Yu, Jieru Chi, Zhibo Yang

Abstract

A novel robust state error port controlled Hamiltonian (PCH) trajectory tracking controller of an unmanned surface vessel (USV) subject to time‐varying disturbances, dynamic uncertainties and control input saturation is presented. The proposed control scheme combines the advantages of the high robustness and energy minimization of the state error PCH approach and the approximation capability of adaptive radial basis function neural networks (RBFNNs). Adaptive RBFNNs are used to the time‐varying disturbances of the environment and unknown dynamics uncertainties of the USV model. The state error PCH control approach is designed such that the system can optimize energy consumption, and the state error PCH technique makes the designed trajectory tracking controller be easy to implement in practice. To handle the effect of the control input saturation, a Gaussian error function model is employed. It has been demonstrated that the proposed approach can maintain the USV’s trajectory at the desired trajectory, while the closed‐loop control system can guarantee the uniformly ultimate boundedness. The energy consumption model of the USV is constructed to reveal to the energy consumption. Simulation results demonstrate the effectiveness of the proposed controller.

Citation

  • Journal: Asian Journal of Control
  • Year: 2023
  • Volume: 25
  • Issue: 5
  • Pages: 3903–3919
  • Publisher: Wiley
  • DOI: 10.1002/asjc.3076

BibTeX

@article{Lv_2023,
  title={{Adaptive NN state error PCH trajectory tracking control for unmanned surface vessel with uncertainties and input saturation}},
  volume={25},
  ISSN={1934-6093},
  DOI={10.1002/asjc.3076},
  number={5},
  journal={Asian Journal of Control},
  publisher={Wiley},
  author={Lv, Chengxing and Chen, Jian and Yu, Haisheng and Chi, Jieru and Yang, Zhibo},
  year={2023},
  pages={3903--3919}
}

Download the bib file

References

  • Liu, Z., Zhang, Y., Yu, X. & Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control vol. 41 71–93 (2016) – 10.1016/j.arcontrol.2016.04.018
  • Fang, M.-C., Lin, Y.-H. & Wang, B.-J. Applying the PD controller on the roll reduction and track keeping for the ship advancing in waves. Ocean Engineering vol. 54 13–25 (2012) – 10.1016/j.oceaneng.2012.07.006
  • Fang, M.-C., Zhuo, Y.-Z. & Lee, Z.-Y. The application of the self-tuning neural network PID controller on the ship roll reduction in random waves. Ocean Engineering vol. 37 529–538 (2010) – 10.1016/j.oceaneng.2010.02.013
  • Bu, X. Prescribed performance control approaches, applications and challenges: A comprehensive survey. Asian Journal of Control vol. 25 241–261 (2022) – 10.1002/asjc.2765
  • Xie, W., Ma, B., Fernando, T., Huang, W. & Zhao, Y. Robust smooth control for global uniform asymptotic stabilization of underactuated surface vessels with unknown model parameters. Asian Journal of Control vol. 24 872–884 (2021) – 10.1002/asjc.2501
  • Deng, Y., Zhang, X., Im, N., Zhang, G. & Zhang, Q. Model-Based Event-Triggered Tracking Control of Underactuated Surface Vessels With Minimum Learning Parameters. IEEE Transactions on Neural Networks and Learning Systems vol. 31 4001–4014 (2020) – 10.1109/tnnls.2019.2951709
  • Zhu, G. & Du, J. Robust adaptive neural trajectory tracking control of unmanned surface vessels under input saturation. 2019 Chinese Control Conference (CCC) 3260–3265 (2019) doi:10.23919/chicc.2019.8865587 – 10.23919/chicc.2019.8865587
  • Wen, G., Ge, S. S., Chen, C. L. P., Tu, F. & Wang, S. Adaptive Tracking Control of Surface Vessel Using Optimized Backstepping Technique. IEEE Transactions on Cybernetics vol. 49 3420–3431 (2019) – 10.1109/tcyb.2018.2844177
  • DOI not foun – 10.1007/s11424‐020‐0059‐z
  • Chen, J., Yu, J. & Lam, H.-K. Adaptive Fuzzy Tracking Control for a Class of Singular Systems via Output Feedback Scheme. IEEE Transactions on Fuzzy Systems vol. 30 610–622 (2022) – 10.1109/tfuzz.2020.3042615
  • Lv, C., Chen, J., Lv, X. & Zhang, Z. Finite-time H control for interval type-2 fuzzy singular systems via switched fuzzy models and static output feedback. Nonlinear Analysis: Hybrid Systems vol. 45 101206 (2022) – 10.1016/j.nahs.2022.101206
  • Wan, L. et al. Neural observer-based path following control for underactuated unmanned surface vessels with input saturation and time-varying disturbance. International Journal of Advanced Robotic Systems vol. 16 (2019) – 10.1177/1729881419878071
  • Yu, J., Chen, B., Yu, H., Lin, C. & Zhao, L. Neural networks-based command filtering control of nonlinear systems with uncertain disturbance. Information Sciences vol. 426 50–60 (2018) – 10.1016/j.ins.2017.10.027
  • Dai, S.-L., Wang, M. & Wang, C. Neural Learning Control of Marine Surface Vessels With Guaranteed Transient Tracking Performance. IEEE Transactions on Industrial Electronics vol. 63 1717–1727 (2016) – 10.1109/tie.2015.2504553
  • Jiang, K. et al. Adaptive Neural Controller Design Scheme of Nonlinear Delayed Systems With Completely Unknown Nonlinearities and Non-Strict-Feedback Structure. IEEE Access vol. 6 66418–66427 (2018) – 10.1109/access.2018.2877798
  • Ge, S. S., Hang, C. C., Lee, T. H. & Zhang, T. Stable Adaptive Neural Network Control. (Springer US, 2002). doi:10.1007/978-1-4757-6577-9 – 10.1007/978-1-4757-6577-9
  • He, W., Dong, Y. & Sun, C. Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 46 334–344 (2016) – 10.1109/tsmc.2015.2429555
  • He, W., Yin, Z. & Sun, C. Adaptive Neural Network Control of a Marine Vessel With Constraints Using the Asymmetric Barrier Lyapunov Function. IEEE Transactions on Cybernetics vol. 47 1641–1651 (2017) – 10.1109/tcyb.2016.2554621
  • Dai, S.-L., He, S., Wang, M. & Yuan, C. Adaptive Neural Control of Underactuated Surface Vessels With Prescribed Performance Guarantees. IEEE Transactions on Neural Networks and Learning Systems vol. 30 3686–3698 (2019) – 10.1109/tnnls.2018.2876685
  • Van, M. An Enhanced Robust Fault Tolerant Control Based on an Adaptive Fuzzy PID-Nonsingular Fast Terminal Sliding Mode Control for Uncertain Nonlinear Systems. IEEE/ASME Transactions on Mechatronics vol. 23 1362–1371 (2018) – 10.1109/tmech.2018.2812244
  • Van, M. Adaptive neural integral sliding‐mode control for tracking control of fully actuated uncertain surface vessels. International Journal of Robust and Nonlinear Control vol. 29 1537–1557 (2019) – 10.1002/rnc.4455
  • Zheng, Z., Jin, C., Zhu, M. & Sun, K. Trajectory tracking control for a marine surface vessel with asymmetric saturation actuators. Robotics and Autonomous Systems vol. 97 83–91 (2017) – 10.1016/j.robot.2017.08.005
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Ortega, R., Donaire, A. & Romero, J. G. Passivity-Based Control of Mechanical Systems. Lecture Notes in Control and Information Sciences 167–199 (2017) doi:10.1007/978-3-319-51298-3_7 – 10.1007/978-3-319-51298-3_7
  • Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
  • Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017)10.1016/j.jfranklin.2017.01.012
  • Lv, C. et al. A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Engineering vol. 176 222–230 (2019) – 10.1016/j.oceaneng.2019.02.007
  • Lv, C. et al. Robust state‐error port‐controlled Hamiltonian trajectory tracking control for unmanned surface vehicle with disturbance uncertainties. Asian Journal of Control vol. 24 320–332 (2020)10.1002/asjc.2467
  • Lv, C., Yu, H., Chen, J., Zhao, N. & Chi, J. Trajectory tracking control for unmanned surface vessel with input saturation and disturbances via robust state error IDA-PBC approach. Journal of the Franklin Institute vol. 359 1899–1924 (2022) – 10.1016/j.jfranklin.2022.01.036
  • Wahab M.. Energy Modeling of Differential Drive Robots (2015)
  • Do, K. D. & Pan, J. Global robust adaptive path following of underactuated ships. Automatica vol. 42 1713–1722 (2006) – 10.1016/j.automatica.2006.04.026
  • Zheng, Z. & Feroskhan, M. Path Following of a Surface Vessel With Prescribed Performance in the Presence of Input Saturation and External Disturbances. IEEE/ASME Transactions on Mechatronics vol. 22 2564–2575 (2017) – 10.1109/tmech.2017.2756110
  • Fossen T. I.. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (2002)
  • Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
  • Touzout, W., Benmoussa, Y., Benazzouz, D., Moreac, E. & Diguet, J.-P. Unmanned surface vehicle energy consumption modelling under various realistic disturbances integrated into simulation environment. Ocean Engineering vol. 222 108560 (2021) – 10.1016/j.oceaneng.2020.108560
  • Sontag E. D.. Input to State Stability: Basic Concepts and Results. 1932 of Lecture notes in Mathematics (2008)
  • Ma, J., Ge, S. S., Zheng, Z. & Hu, D. Adaptive NN Control of a Class of Nonlinear Systems With Asymmetric Saturation Actuators. IEEE Transactions on Neural Networks and Learning Systems vol. 26 1532–1538 (2015) – 10.1109/tnnls.2014.2344019
  • Chen, M., Ge, S. S. & Ren, B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica vol. 47 452–465 (2011) – 10.1016/j.automatica.2011.01.025
  • Do, K. D. & Pan, J. Control of Ships and Underwater Vehicles. Advances in Industrial Control (Springer London, 2009). doi:10.1007/978-1-84882-730-1 – 10.1007/978-1-84882-730-1
  • Hamayun, M. T., Edwards, C. & Alwi, H. Design and Analysis of an Integral Sliding Mode Fault-Tolerant Control Scheme. IEEE Transactions on Automatic Control vol. 57 1783–1789 (2012) – 10.1109/tac.2011.2180090
  • Du, J., Hu, X., Krstić, M. & Sun, Y. Robust dynamic positioning of ships with disturbances under input saturation. Automatica vol. 73 207–214 (2016) – 10.1016/j.automatica.2016.06.020