Port-Hamiltonian Modeling of Hydraulics in 4th Generation District Heating Networks
Authors
Felix Strehle, Juan E. Machado, Michele Cucuzzella, Albertus J. Malan, Jacquelien M.A. Scherpen, Soren Hohmann
Abstract
In this paper, we use elements of graph theory and port-Hamiltonian systems to develop a modular dynamic model describing the hydraulic behavior of 4th generation district heating networks. In contrast with earlier generation networks with a single or few heat sources and pumps, newer installations will prominently feature distributed heat generation units, bringing about a number of challenges for the control and stable operation of these systems, e.g., flow reversals and interactions among pumps controllers, which may lead to severe oscillations. We focus thus on flexible system setups with an arbitrary number of distributed heat sources and end-users interconnected through a meshed, multi-layer distribution network of pipes. Moreover, differently from related works on the topic, we incorporate dynamic models for the pumps in the system and explicitly account for the presence of pressure holding units. By inferring suitable (power-preserving) interconnection ports, we provide a number of claims about the passivity properties of the overall, interconnected system, which proves to be highly beneficial in the design of decentralized control schemes and stability analyses.
Citation
- Journal: 2022 IEEE 61st Conference on Decision and Control (CDC)
- Year: 2022
- Volume:
- Issue:
- Pages: 1182–1189
- Publisher: IEEE
- DOI: 10.1109/cdc51059.2022.9992887
BibTeX
@inproceedings{Strehle_2022,
title={{Port-Hamiltonian Modeling of Hydraulics in 4th Generation District Heating Networks}},
DOI={10.1109/cdc51059.2022.9992887},
booktitle={{2022 IEEE 61st Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Strehle, Felix and Machado, Juan E. and Cucuzzella, Michele and Malan, Albertus J. and Scherpen, Jacquelien M.A. and Hohmann, Soren},
year={2022},
pages={1182--1189}
}
References
- Lund, H. et al. 4th Generation District Heating (4GDH). Energy vol. 68 1–11 (2014) – 10.1016/j.energy.2014.02.089
- Vandermeulen, A., van der Heijde, B. & Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy vol. 151 103–115 (2018) – 10.1016/j.energy.2018.03.034
- Novitsky, N. N. et al. Smarter Smart District Heating. Proceedings of the IEEE vol. 108 1596–1611 (2020) – 10.1109/jproc.2020.2990490
- Wang, H., Wang, H. & Zhu, T. A new hydraulic regulation method on district heating system with distributed variable-speed pumps. Energy Conversion and Management vol. 147 174–189 (2017) – 10.1016/j.enconman.2017.03.059
- Pan, Z., Guo, Q. & Sun, H. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow. Applied Energy vol. 167 230–243 (2016) – 10.1016/j.apenergy.2015.10.095
- Chertkov, M. & Novitsky, N. N. Thermal Transients in District Heating Systems. Energy vol. 184 22–33 (2019) – 10.1016/j.energy.2018.01.049
- Nussbaumer, Handbook on planning of district heating networks (2020)
- Strehle, F., Vieth, J., Pfeifer, M. & Hohmann, S. Passivity-Based Stability Analysis of Hydraulic Equilibria in 4th Generation District Heating Networks. IFAC-PapersOnLine vol. 54 261–266 (2021) – 10.1016/j.ifacol.2021.11.088
- Machado, J. E., Cucuzzella, M. & Scherpen, J. M. A. Modeling and passivity properties of multi-producer district heating systems. Automatica vol. 142 110397 (2022) – 10.1016/j.automatica.2022.110397
- Hertle, Wärmewende in Kommunen: Leitfaden für den klimafreundlichen Umbau der Wärmeversorgung (German) [Heat transition in municipalities: Guideline for a climate friendly change of heat supply] (2015)
- De Persis, C. & Kallesoe, C. S. Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls. IEEE Transactions on Control Systems Technology vol. 19 1371–1383 (2011) – 10.1109/tcst.2010.2094619
- Yan, A. et al. Hydraulic performance of a new district heating systems with distributed variable speed pumps. Applied Energy vol. 112 876–885 (2013) – 10.1016/j.apenergy.2013.06.031
- Buffa, S., Fouladfar, M. H., Franchini, G., Lozano Gabarre, I. & Andrés Chicote, M. Advanced Control and Fault Detection Strategies for District Heating and Cooling Systems—A Review. Applied Sciences vol. 11 455 (2021) – 10.3390/app11010455
- Sommer, T., Mennel, S. & Sulzer, M. Lowering the pressure in district heating and cooling networks by alternating the connection of the expansion vessel. Energy vol. 172 991–996 (2019) – 10.1016/j.energy.2019.02.010
- van der Heijde, B. et al. Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems. Energy Conversion and Management vol. 151 158–169 (2017) – 10.1016/j.enconman.2017.08.072
- Mohring, J., Linn, D., Eimer, M., Rein, M. & Siedow, N. District Heating Networks – Dynamic Simulation and Optimal Operation. Mathematics in Industry 303–325 (2021) doi:10.1007/978-3-030-62732-4_14 – 10.1007/978-3-030-62732-4_14
- De Lorenzi, A., Gambarotta, A., Morini, M., Rossi, M. & Saletti, C. Setup and testing of smart controllers for small-scale district heating networks: An integrated framework. Energy vol. 205 118054 (2020) – 10.1016/j.energy.2020.118054
- Guerrero, J. M., Chandorkar, M., Lee, T.-L. & Loh, P. C. Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Transactions on Industrial Electronics vol. 60 1254–1262 (2013) – 10.1109/tie.2012.2194969
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Ortega, R. Passivity–based control of Euler–Lagrange systems: applications to robots, AC motors and power converters. Modelling and Control of Mechanical Systems 75–92 (1997) doi:10.1142/9781848160873_0006 – 10.1142/9781848160873_0006
- Strehle, F., Nahata, P., Malan, A. J., Hohmann, S. & Ferrari-Trecate, G. A Unified Passivity-Based Framework for Control of Modular Islanded AC Microgrids. IEEE Transactions on Control Systems Technology vol. 30 1960–1976 (2022) – 10.1109/tcst.2021.3136489
- Watson, J. D., Ojo, Y., Laib, K. & Lestas, I. A Scalable Control Design for Grid-Forming Inverters in Microgrids. IEEE Transactions on Smart Grid vol. 12 4726–4739 (2021) – 10.1109/tsg.2021.3105730
- Ferguson, J., Cucuzzella, M. & Scherpen, J. M. A. Exponential Stability and Local ISS for DC Networks. IEEE Control Systems Letters vol. 5 893–898 (2021) – 10.1109/lcsys.2020.3007222
- Machado, J. E. & Schiffer, J. A passivity-inspired design of power-voltage droop controllers for DC microgrids with electrical network dynamics. 2020 59th IEEE Conference on Decision and Control (CDC) 3060–3065 (2020) doi:10.1109/cdc42340.2020.9303758 – 10.1109/cdc42340.2020.9303758
- van der Schaft, A. Port-Hamiltonian Modeling for Control. Annual Review of Control, Robotics, and Autonomous Systems vol. 3 393–416 (2020) – 10.1146/annurev-control-081219-092250
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- Krishna, A. & Schiffer, J. A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid. IFAC-PapersOnLine vol. 54 287–293 (2021) – 10.1016/j.ifacol.2021.11.092
- Scholten, T., Trip◊, S. & De Persis, C. Pressure Regulation in Large Scale Hydraulic Networks with Input Constraints. IFAC-PapersOnLine vol. 50 5367–5372 (2017) – 10.1016/j.ifacol.2017.08.1068
- Trip, S., Scholten, T. & Persis, C. D. Optimal regulation of flow networks with transient constraints. Automatica vol. 104 141–153 (2019) – 10.1016/j.automatica.2019.02.046
- Jensen, Plug and play control of hydraulic networks. Ph.D. dissertation (2012)
- Goppelt, Modeling centrifugal pump systems from a system-theoretical point of view. 2018 18th International Conference on Mechatronics - Mechatronika (ME)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Lennermo, G., Lauenburg, P. & Werner, S. Control of decentralised solar district heating. Solar Energy vol. 179 307–315 (2019) – 10.1016/j.solener.2018.12.080
- Lamaison, N., Bavière, R., Cheze, D. & Paulus, C. A Multi-Criteria Analysis of Bidirectional Solar District Heating Substation Architecture. Proceedings of SWC2017/SHC2017 1–11 (2017) doi:10.18086/swc.2017.10.02 – 10.18086/swc.2017.10.02
- Sarbu, I. & Valea, E. Energy Savings Potential for Pumping Water in District Heating Stations. Sustainability vol. 7 5705–5719 (2015) – 10.3390/su7055705
- Aktiengesellschaft, Pump control / system automation. KSB Know-how (2006)
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Stræde, Pressure oscillation in district heating installations (1995)
- Boysen, How to avoid pressure oscillations in district heating systems (2003)
- Machado, J. E., Cucuzzella, M., Pronk, N. & Scherpen, J. M. A. Adaptive Control for Flow and Volume Regulation in Multi-Producer District Heating Systems. IEEE Control Systems Letters vol. 6 794–799 (2022) – 10.1109/lcsys.2021.3085702