Authors

Tjardo Scholten, Sebastian Trip◊, Claudio De Persis

Abstract

In this paper we investigate pressure regulation in large scale hydraulic networks with a multi-pump architecture. We propose distributed controllers that regulate the pressure drop at each end-user asymptotically towards desired set-points. We prove that the obtained closed-loop nonlinear system is locally asymptotically stable. In contrast to previous results, the proposed solution guarantees besides pressure regulation, that the pumps generate only positive pressures (inputs), required by many (centrifugal) pumps that are commonly used in hydraulic networks.

Keywords

Output regulation; Nonlinear control; Hydraulic networks; Constrained control

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2017
  • Volume: 50
  • Issue: 1
  • Pages: 5367–5372
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2017.08.1068
  • Note: 20th IFAC World Congress

BibTeX

@article{Scholten_2017,
  title={{Pressure Regulation in Large Scale Hydraulic Networks with Input Constraints}},
  volume={50},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2017.08.1068},
  number={1},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Scholten, Tjardo and Trip◊, Sebastian and De Persis, Claudio},
  year={2017},
  pages={5367--5372}
}

Download the bib file

References

  • Blanchini, F., Franco, E., Giordano, G., Mardanlou, V. & Montessoro, P. L. Compartmental flow control: Decentralization, robustness and optimality. Automatica vol. 64 18–28 (2016) – 10.1016/j.automatica.2015.10.046
  • Cantoni, M. et al. Control of Large-Scale Irrigation Networks. Proceedings of the IEEE vol. 95 75–91 (2007) – 10.1109/jproc.2006.887289
  • De Persis, C., Jensen, T. N., Ortega, R. & Wisniewski, R. Output Regulation of Large-Scale Hydraulic Networks. IEEE Transactions on Control Systems Technology vol. 22 238–245 (2014) – 10.1109/tcst.2012.2233477
  • De Persis, C. & Kallesoe, C. S. Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls. IEEE Transactions on Control Systems Technology vol. 19 1371–1383 (2011) – 10.1109/tcst.2010.2094619
  • Gambino, G. et al. Optimal operation of a district heating power plant with thermal energy storage. 2016 American Control Conference (ACC) 2334–2339 (2016) doi:10.1109/acc.2016.7525266 – 10.1109/acc.2016.7525266
  • Hu, Y., Koroleva, O. I. & Krstić, M. Nonlinear control of mine ventilation networks. Systems & Control Letters vol. 49 239–254 (2003) – 10.1016/s0167-6911(02)00336-5
  • Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
  • Kallesøe, Adaptive reference control for pressure management in water networks. In Proc. of the IEEE European Control Conference (ECC) (2015)
  • Koroleva, Averaging analysis of periodically forced fluid networks. Automatica (2005)
  • Koroleva, O. I., Krstić, M. & Schmid-Schönbein, G. W. Decentralized and adaptive control of nonlinear fluid flow networks. International Journal of Control vol. 79 1495–1504 (2006) – 10.1080/00207170600849402
  • Marinaki, M. A non-linear optimal control approach to central sewer network flow control. International Journal of Control vol. 72 418–429 (1999) – 10.1080/002071799221055
  • Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008)10.1109/tac.2008.2006930
  • Scholten, (2016)
  • Sloth, Stability verification for energy-aware hydraulic pressure control via simpli-cial subdivision. In Proc. of the IEEE European Control Conference (ECC) (2015)
  • Tahavori, M., Leth, J., Kallesøe, C. & Wisniewski, R. Optimal control of nonlinear hydraulic networks in the presence of disturbance. Nonlinear Dynamics vol. 75 539–548 (2013) – 10.1007/s11071-013-1083-5
  • Trip, S., Bürger, M. & De Persis, C. An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica vol. 64 240–253 (2016) – 10.1016/j.automatica.2015.11.021
  • Trip, S., Scholten, T. & De Persis, C. Optimal Regulation of Flow Networks with Input and Flow Constraints. IFAC-PapersOnLine vol. 50 9444–9449 (2017) – 10.1016/j.ifacol.2017.08.1464
  • van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013)10.1137/110840091
  • Wan, Distributed flow control using embedded sensor-actuator networks for the reduction of combined sewer overflow (cso) events. In Proc. of the IEEE Conference on Decision and Control (CDC) (2007)
  • Zhong Wang, Polycarpou, M. M., Uber, J. G. & Feng Shang. Adaptive control of water quality in water distribution networks. IEEE Transactions on Control Systems Technology vol. 14 149–156 (2006) – 10.1109/tcst.2005.859633
  • Wei, J. & van der Schaft, A. Constrained proportional integral control of dynamical distribution networks with state constraints. 53rd IEEE Conference on Decision and Control 6056–6061 (2014) doi:10.1109/cdc.2014.7040337 – 10.1109/cdc.2014.7040337