A passivity-inspired design of power-voltage droop controllers for DC microgrids with electrical network dynamics
Authors
Juan E. Machado, Johannes Schiffer
Abstract
We propose a design procedure for a power-voltage droop controller in structure-preserving DC microgrids under explicit consideration of the electrical network dynamics. Differently from most related literature, the system’s controlled output is taken as the power—not the current—injection at each generation unit, yielding a nonlinear closed-loop system. This makes the output regulation problem non-trivial, yet far more appealing in a practical setting than the usual linear current-voltage droop control. Our approach is inspired by passivity-based control design in the sense that we exploit the natural port-Hamiltonian representation of the system dynamics and its associated shifted Hamiltonian to derive a control law together with sufficient conditions on the tuning gains that guarantee global asymptotic stability. The analysis is illustrated via detailed simulations, where accurate power sharing is manifested among the distributed generation units in the presence of load variations.
Citation
- Journal: 2020 59th IEEE Conference on Decision and Control (CDC)
- Year: 2020
- Volume:
- Issue:
- Pages: 3060–3065
- Publisher: IEEE
- DOI: 10.1109/cdc42340.2020.9303758
BibTeX
@inproceedings{Machado_2020,
title={{A passivity-inspired design of power-voltage droop controllers for DC microgrids with electrical network dynamics}},
DOI={10.1109/cdc42340.2020.9303758},
booktitle={{2020 59th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Machado, Juan E. and Schiffer, Johannes},
year={2020},
pages={3060--3065}
}
References
- Zonetti, D., Saoud, A., Girard, A. & Fribourg, L. Decentralized monotonicity-based voltage control of DC microgrids with ZIP loads. IFAC-PapersOnLine 52, 139–144 (2019) – 10.1016/j.ifacol.2019.12.148
- Cucuzzella, M. et al. A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids. IEEE Trans. Contr. Syst. Technol. 27, 1583–1595 (2019) – 10.1109/tcst.2018.2834878
- strehle, A Scalable PortHamiltonian Approach to Plug-and-Play Voltage Stabilization in DC Microgrids. (2020)
- Nahata, P., Soloperto, R., Tucci, M., Martinelli, A. & Ferrari-Trecate, G. A passivity-based approach to voltage stabilization in DC microgrids with ZIP loads. Automatica 113, 108770 (2020) – 10.1016/j.automatica.2019.108770
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Bregman, L. M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217 (1967) – 10.1016/0041-5553(67)90040-7
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters 56, 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- De Persis, C. & Monshizadeh, N. Bregman Storage Functions for Microgrid Control. IEEE Trans. Automat. Contr. 63, 53–68 (2018) – 10.1109/tac.2017.2709246
- Monshizadeh, P., Machado, J. E., Ortega, R. & van der Schaft, A. Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads. Automatica 109, 108527 (2019) – 10.1016/j.automatica.2019.108527
- Monshizadeh, N., Monshizadeh, P., Ortega, R. & van der Schaft, A. Conditions on shifted passivity of port-Hamiltonian systems. Systems & Control Letters 123, 55–61 (2019) – 10.1016/j.sysconle.2018.10.010
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Matveev, A. S., Machado, J. E., Ortega, R., Schiffer, J. & Pyrkin, A. A Tool for Analysis of Existence of Equilibria and Voltage Stability in Power Systems With Constant Power Loads. IEEE Trans. Automat. Contr. 65, 4726–4740 (2020) – 10.1109/tac.2020.2965028
- De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica 89, 364–375 (2018) – 10.1016/j.automatica.2017.12.026
- Zonetti, D., Ortega, R. & Schiffer, J. A Tool for Stability and Power-Sharing Analysis of a Generalized Class of Droop Controllers for High-Voltage Direct-Current Transmission Systems. IEEE Trans. Control Netw. Syst. 5, 1110–1119 (2018) – 10.1109/tcns.2017.2687080
- Zhao, J. & Dörfler, F. Distributed control and optimization in DC microgrids. Automatica 61, 18–26 (2015) – 10.1016/j.automatica.2015.07.015
- Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G. & Castilla, M. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Trans. Ind. Electron. 58, 158–172 (2011) – 10.1109/tie.2010.2066534
- Simpson-Porco, J. W., Dorfler, F. & Bullo, F. Voltage Stabilization in Microgrids via Quadratic Droop Control. IEEE Trans. Automat. Contr. 62, 1239–1253 (2017) – 10.1109/tac.2016.2585094
- GAO, F., KANG, R., CAO, J. & YANG, T. Primary and secondary control in DC microgrids: a review. J. Mod. Power Syst. Clean Energy 7, 227–242 (2018) – 10.1007/s40565-018-0466-5
- Gao, F. et al. Comparative Stability Analysis of Droop Control Approaches in Voltage-Source-Converter-Based DC Microgrids. IEEE Trans. Power Electron. 32, 2395–2415 (2017) – 10.1109/tpel.2016.2567780
- Dragicevic, T., Lu, X., Vasquez, J. & Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 1–1 (2015) doi:10.1109/tpel.2015.2478859 – 10.1109/tpel.2015.2478859
- Justo, J. J., Mwasilu, F., Lee, J. & Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews 24, 387–405 (2013) – 10.1016/j.rser.2013.03.067
- cucuzzella, Voltage control of DC networks : robustness for unknown ZIP-loads. (2019)
- Lasseter, R. H. MicroGrids. 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309) vol. 1 305–308 – 10.1109/pesw.2002.985003
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Caliskan, S. Y. & Tabuada, P. Towards Kron reduction of generalized electrical networks. Automatica 50, 2586–2590 (2014) – 10.1016/j.automatica.2014.08.017
- kundur, Power System Stability and Control (1994)
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19, 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Floriduz, A., Tucci, M., Riverso, S. & Ferrari-Trecate, G. Approximate Kron Reduction Methods for Electrical Networks With Applications to Plug-and-Play Control of AC Islanded Microgrids. IEEE Trans. Contr. Syst. Technol. 27, 2403–2416 (2019) – 10.1109/tcst.2018.2863645
- Peña-Alzola, R. et al. Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters. IEEE Trans. Power Electron. 28, 2642–2646 (2013) – 10.1109/tpel.2012.2222931
- Cespedes, M., Xing, L. & Sun, J. Constant-Power Load System Stabilization by Passive Damping. IEEE Trans. Power Electron. 26, 1832–1836 (2011) – 10.1109/tpel.2011.2151880