Exponential Stability and Local ISS for DC Networks
Authors
Joel Ferguson, Michele Cucuzzella, Jacquelien M. A. Scherpen
Abstract
In this letter, we consider the problem of regulating the voltage of an islanded Direct Current (DC) network subject to (i) unknown ZIP-loads, i.e., nonlinear loads with the parallel combination of constant impedance (Z), current (I) and power (P) components, and (ii) unknown time-varying disturbances. Using the port-Hamiltonian framework, two decentralized passivity-based control schemes are designed. It is shown that, using the proposed controllers, the desired equilibrium is exponentially stable and local input-to-state stable (LISS) with respect to unknown time-varying disturbances.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2021
- Volume: 5
- Issue: 3
- Pages: 893–898
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2020.3007222
BibTeX
@article{Ferguson_2021,
title={{Exponential Stability and Local ISS for DC Networks}},
volume={5},
ISSN={2475-1456},
DOI={10.1109/lcsys.2020.3007222},
number={3},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Ferguson, Joel and Cucuzzella, Michele and Scherpen, Jacquelien M. A.},
year={2021},
pages={893--898}
}
References
- Nahata, P., Soloperto, R., Tucci, M., Martinelli, A. & Ferrari-Trecate, G. A passivity-based approach to voltage stabilization in DC microgrids with ZIP loads. Automatica vol. 113 108770 (2020) – 10.1016/j.automatica.2019.108770
- Cucuzzella, M., Lazzari, R., Kawano, Y., Kosaraju, K. C. & Scherpen, J. M. A. Robust Passivity-Based Control of Boost Converters in DC Microgrids⋆. 2019 IEEE 58th Conference on Decision and Control (CDC) (2019) doi:10.1109/cdc40024.2019.9029657 – 10.1109/cdc40024.2019.9029657
- strehle, A scalable port-hamiltonian approach to plug-and-play voltage stabilization in DC microgrids (2020)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Transactions on Automatic Control vol. 62 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Sontag, E. D. & Yuan Wang. New characterizations of input-to-state stability. IEEE Transactions on Automatic Control vol. 41 1283–1294 (1996) – 10.1109/9.536498
- khalil, Nonlinear Systems (2002)
- Trip, S., Cucuzzella, M., Cheng, X. & Scherpen, J. Distributed Averaging Control for Voltage Regulation and Current Sharing in DC Microgrids. IEEE Control Systems Letters vol. 3 174–179 (2019) – 10.1109/lcsys.2018.2857559
- Dashkovskiy, S. N. & Rüffer, B. S. Local ISS of large-scale interconnections and estimates for stability regions. Systems & Control Letters vol. 59 241–247 (2010) – 10.1016/j.sysconle.2010.02.001
- De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica vol. 89 364–375 (2018) – 10.1016/j.automatica.2017.12.026
- Tucci, M., Riverso, S. & Ferrari-Trecate, G. Line-Independent Plug-and-Play Controllers for Voltage Stabilization in DC Microgrids. IEEE Transactions on Control Systems Technology vol. 26 1115–1123 (2018) – 10.1109/tcst.2017.2695167
- Zhao, J. & Dörfler, F. Distributed control and optimization in DC microgrids. Automatica vol. 61 18–26 (2015) – 10.1016/j.automatica.2015.07.015
- Kosaraju, K. C., Cucuzzella, M., Scherpen, J. M. A. & Pasumarthy, R. Differentiation and Passivity for Control of Brayton–Moser Systems. IEEE Transactions on Automatic Control vol. 66 1087–1101 (2021) – 10.1109/tac.2020.2994317
- Cucuzzella, M. et al. Sliding mode voltage control of boost converters in DC microgrids. Control Engineering Practice vol. 73 161–170 (2018) – 10.1016/j.conengprac.2018.01.009
- Perez, F., Iovine, A., Damm, G., Galai-Dol, L. & Ribeiro, P. F. Stability Analysis of a DC MicroGrid for a Smart Railway Station Integrating Renewable Sources. IEEE Transactions on Control Systems Technology vol. 28 1802–1816 (2020) – 10.1109/tcst.2019.2924615
- Iovine, A. et al. Voltage Stabilization in a DC MicroGrid by an ISS-like Lyapunov Function implementing Droop Control. 2018 European Control Conference (ECC) 1130–1135 (2018) doi:10.23919/ecc.2018.8550492 – 10.23919/ecc.2018.8550492
- Dragicevic, T., Lu, X., Vasquez, J. & Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Transactions on Power Electronics 1–1 (2015) doi:10.1109/tpel.2015.2478859 – 10.1109/tpel.2015.2478859
- Justo, J. J., Mwasilu, F., Lee, J. & Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews vol. 24 387–405 (2013) – 10.1016/j.rser.2013.03.067
- Monshizadeh, P., Machado, J. E., Ortega, R. & van der Schaft, A. Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads. Automatica vol. 109 108527 (2019) – 10.1016/j.automatica.2019.108527
- Cucuzzella, M. et al. A Robust Consensus Algorithm for Current Sharing and Voltage Regulation in DC Microgrids. IEEE Transactions on Control Systems Technology vol. 27 1583–1595 (2019) – 10.1109/tcst.2018.2834878