Passivity-Based Stability Analysis of Hydraulic Equilibria in 4th Generation District Heating Networks
Authors
Felix Strehle, Jonathan Vieth, Martin Pfeifer, Sören Hohmann
Abstract
In this paper, we analyze the stability of hydraulic, i.e. pressure and flow, equilibria in 4th generation district heating networks (DHNs). We consider the hydraulic behavior of a general class of DHNs with an arbitrary number of distributed heat generation units (DGUs) and end-users connected through a network of pipes. For each subsystem, we first derive a model in form of an explicit port-Hamiltonian system with nonlinear resistive structure. Based on these models and with methods from equilibrium-independent passivity (EIP), we prove the stability of the DHN’s hydraulic equilibria. From our results, we deduce requirements for a plug-and-play control of DHNs and draw conclusions for future work.
Keywords
port-Hamiltonian systems; district heating systems; stability analysis; asymptotic stability; pressure control; decentralized control design
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 261–266
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.088
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Strehle_2021,
title={{Passivity-Based Stability Analysis of Hydraulic Equilibria in 4th Generation District Heating Networks}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.088},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Strehle, Felix and Vieth, Jonathan and Pfeifer, Martin and Hohmann, Sören},
year={2021},
pages={261--266}
}
References
- Arcak, (2016)
- Brand, L., Calvén, A., Englund, J., Landersjö, H. & Lauenburg, P. Smart district heating networks – A simulation study of prosumers’ impact on technical parameters in distribution networks. Applied Energy vol. 129 39–48 (2014) – 10.1016/j.apenergy.2014.04.079
- Chertkov, M. & Novitsky, N. N. Thermal Transients in District Heating Systems. Energy vol. 184 22–33 (2019) – 10.1016/j.energy.2018.01.049
- De Persis, C., Jensen, T. N., Ortega, R. & Wisniewski, R. Output Regulation of Large-Scale Hydraulic Networks. IEEE Transactions on Control Systems Technology vol. 22 238–245 (2014) – 10.1109/tcst.2012.2233477
- De Persis, C. & Kallesoe, C. S. Pressure regulation in nonlinear hydraulic networks by positive controls. 2009 European Control Conference (ECC) 4102–4107 (2009) doi:10.23919/ecc.2009.7075043 – 10.23919/ecc.2009.7075043
- De Persis, C. & Kallesoe, C. S. Pressure Regulation in Nonlinear Hydraulic Networks by Positive and Quantized Controls. IEEE Transactions on Control Systems Technology vol. 19 1371–1383 (2011) – 10.1109/tcst.2010.2094619
- Guerrero, J. M., Chandorkar, M., Lee, T.-L. & Loh, P. C. Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control. IEEE Transactions on Industrial Electronics vol. 60 1254–1262 (2013) – 10.1109/tie.2012.2194969
- Hassine, I. B. & Eicker, U. Control Aspects of Decentralized Solar Thermal Integration into District Heating Networks. Energy Procedia vol. 48 1055–1064 (2014) – 10.1016/j.egypro.2014.02.120
- Hauschild, S.-A. et al. Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–355 (2020) doi:10.1007/978-3-030-53905-4_11 – 10.1007/978-3-030-53905-4_11
- Heymann, M., Rühling, K. & Felsmann, C. Integration of Solar Thermal Systems into District Heating – DH System Simulation. Energy Procedia vol. 116 394–402 (2017) – 10.1016/j.egypro.2017.05.086
- Lamaison, N., Bavière, R., Cheze, D. & Paulus, C. A Multi-Criteria Analysis of Bidirectional Solar District Heating Substation Architecture. Proceedings of SWC2017/SHC2017 1–11 (2017) doi:10.18086/swc.2017.10.02 – 10.18086/swc.2017.10.02
- Lennermo, G., Lauenburg, P. & Werner, S. Control of decentralised solar district heating. Solar Energy vol. 179 307–315 (2019) – 10.1016/j.solener.2018.12.080
- Lund, H. et al. 4th Generation District Heating (4GDH). Energy vol. 68 1–11 (2014) – 10.1016/j.energy.2014.02.089
- Novitsky, N. N. et al. Smarter Smart District Heating. Proceedings of the IEEE vol. 108 1596–1611 (2020) – 10.1109/jproc.2020.2990490
- Pan, Z., Guo, Q. & Sun, H. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow. Applied Energy vol. 167 230–243 (2016) – 10.1016/j.apenergy.2015.10.095
- Scholten, T., Trip◊, S. & De Persis, C. Pressure Regulation in Large Scale Hydraulic Networks with Input Constraints. IFAC-PapersOnLine vol. 50 5367–5372 (2017) – 10.1016/j.ifacol.2017.08.1068
- Trip, S., Scholten, T. & Persis, C. D. Optimal regulation of flow networks with transient constraints. Automatica vol. 104 141–153 (2019) – 10.1016/j.automatica.2019.02.046
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, (2017)
- Vandermeulen, A., van der Heijde, B. & Helsen, L. Controlling district heating and cooling networks to unlock flexibility: A review. Energy vol. 151 103–115 (2018) – 10.1016/j.energy.2018.03.034