Implicit Hamiltonian systems with symmetry
Authors
Abstract
Implicit Hamiltonian systems with symmetry are treated by exploiting the notion of symmetry of Dirac structures. It is shown how Dirac structures can be reduced to Dirac structures on the orbit space of the symmetry group, leading to a reduced implicit (generalized) Hamiltonian system. The approach is specialized to nonholonomic mechanical systems with symmetry.
Keywords
Hamiltonian systems; implicit systems; Dirac structures; symmetry; reduction; nonholonomic constraints
Citation
- Journal: Reports on Mathematical Physics
- Year: 1998
- Volume: 41
- Issue: 2
- Pages: 203–221
- Publisher: Elsevier BV
- DOI: 10.1016/s0034-4877(98)80176-6
BibTeX
@article{van_der_Schaft_1998,
title={{Implicit Hamiltonian systems with symmetry}},
volume={41},
ISSN={0034-4877},
DOI={10.1016/s0034-4877(98)80176-6},
number={2},
journal={Reports on Mathematical Physics},
publisher={Elsevier BV},
author={van der Schaft, A.J.},
year={1998},
pages={203--221}
}
References
- Dynamical Systems III. Encyclopaedia of Mathematical Sciences (Springer Berlin Heidelberg, 1988). doi:10.1007/978-3-662-02535-2 – 10.1007/978-3-662-02535-2
- Bates, L. & Śniatycki, J. Nonholonomic reduction. Reports on Mathematical Physics 32, 99–115 (1993) – 10.1016/0034-4877(93)90073-n
- Bloch, (1997)
- Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. & Murray, R. M. Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996) – 10.1007/bf02199365
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- Cushman, R., Kemppainen, D., Śniatycki, J. & Bates, L. Geometry of nonholonomic constraints. Reports on Mathematical Physics 36, 275–286 (1995) – 10.1016/0034-4877(96)83625-1
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Dorfman, (1993)
- Koiller, J. Reduction of some classical non-holonomic systems with symmetry. Arch. Rational Mech. Anal. 118, 113–148 (1992) – 10.1007/bf00375092
- Koon, W. S. & Marsden, J. E. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on Mathematical Physics 40, 21–62 (1997) – 10.1016/s0034-4877(97)85617-0
- Libermann, (1987)
- Marle, Géométrie des systèmes mécaniques à liaisons actives. (1992)
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
- Marsden, J. & Weinstein, A. Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics 5, 121–130 (1974) – 10.1016/0034-4877(74)90021-4
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- Maschke, (1996)
- Neimark, Amer. Math. Soc. Translations (1972)
- Nijmeijer, (1990)
- Olver, Applications of Lie Groups to Differential Equations. (1986)
- van der Schaft, Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, Mathematical modeling of constrained Hamiltonian systems. (1995)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, Interconnected Mechanical Systems, part I: Geometry of Interconnection and Implicit Hamiltonian Systems. (1997)
- Tulczyjew, (1989)
- Whittaker, (1937)