Authors

A.J. van der Schaft

Abstract

In this paper we investigate the relationships between port-Hamiltonian and gradient systems; primarily in the linear case. We show how the combination of the property of passivity with that of a gradient system leads to a class of systems which can be directly related to the classical Brayton-Moser description of RLC circuits.

Keywords

Passivity; reciprocity; storage functions; potential functions; indefinite innner products; Brayton-Moser equations; RLC-circuits; consensus algorithms; Hessian Riemannian metrics

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2011
  • Volume: 44
  • Issue: 1
  • Pages: 3321–3326
  • Publisher: Elsevier BV
  • DOI: 10.3182/20110828-6-it-1002.00555
  • Note: 18th IFAC World Congress

BibTeX

@article{van_der_Schaft_2011,
  title={{On The Relation Between Port-Hamiltonian And Gradient Systems}},
  volume={44},
  ISSN={1474-6670},
  DOI={10.3182/20110828-6-it-1002.00555},
  number={1},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={van der Schaft, A.J.},
  year={2011},
  pages={3321--3326}
}

Download the bib file

References

  • Alvarez, F., Bolte, J. & Brahic, O. Hessian Riemannian Gradient Flows in Convex Programming. SIAM J. Control Optim. 43, 477–501 (2004) – 10.1137/s0363012902419977
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quart. Appl. Math. 22, 81–104 (1964) – 10.1090/qam/169747
  • Cortés, J., van der Schaft, A. & Crouch, P. E. Characterization of Gradient Control Systems. SIAM J. Control Optim. 44, 1192–1214 (2005) – 10.1137/s0363012903425568
  • Crouch, P. E. Geometric structures in systems theory. IEE Proc. D Control Theory Appl. UK 128, 242 (1981) – 10.1049/ip-d.1981.0051
  • Duistermaat, J. J. On Hessian Riemannian structures. Asian Journal of Mathematics 5, 79–91 (2001) – 10.4310/ajm.2001.v5.n1.a6
  • van der SCHAFT, A. J. Linearization of Hamiltonian and Gradient Systems. IMA J Math Control Info 1, 185–198 (1984) – 10.1093/imamci/1.2.185
  • van der Schaft, “Port-Hamiltonian Systems”. (2009)
  • Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Trans. Circuits Syst. I 50, 1174–1179 (2003) – 10.1109/tcsi.2003.816332
  • Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Automat. Contr. 48, 1762–1767 (2003) – 10.1109/tac.2003.817918
  • van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. (1996)
  • van der Schaft, “The Hamiltonian formulation of energy conserving physical systems with external ports”. Archiv für Elektronik und Übertragungstechnik (1995)
  • van der Schaft, “Port-Hamiltonian dynamics on graphs: consensus and coordination control algorithms”. (2010)
  • Smale, ”On the mathematical foundations of electrical circuit theory”. J. Diff. Equations (1972)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
  • Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal. 45, 352–393 (1972) – 10.1007/bf00276494