Port-Hamiltonian Control Design for an IPMC Actuated Highly Flexible Endoscope
Authors
Alessandro Macchelli, Yongxin Wu, Yann Le Gorrec
Abstract
This paper deals with modelling and control of an endoscope actuated by Ionic Polymer Metal Composites (IPMC) patches. The endoscope is modelled by a nonlinear partial differential equation (PDE) capable to describe large deformations. The dynamics of the flexible structure and of the IPMC patches are in port-Hamiltonian form, with the actuators interconnected to the mechanical device in power-conserving way. Thus, the complete model is a port-Hamiltonian system in which a PDE with fixed boundary conditions is coupled with a set of ordinary differential equations. The control inputs are the voltages applied to the patches, and the feedback law is designed within the Interconnection and Damping Assignment Passivity-based Control (IDA-PBC) framework. The asymptotic stability of the closed-loop system is proved, and the effectiveness of the design procedure is illustrated by a numerical example.
Citation
- Journal: 2023 62nd IEEE Conference on Decision and Control (CDC)
- Year: 2023
- Volume:
- Issue:
- Pages: 1955–1960
- Publisher: IEEE
- DOI: 10.1109/cdc49753.2023.10383805
BibTeX
@inproceedings{Macchelli_2023,
title={{Port-Hamiltonian Control Design for an IPMC Actuated Highly Flexible Endoscope}},
DOI={10.1109/cdc49753.2023.10383805},
booktitle={{2023 62nd IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro and Wu, Yongxin and Gorrec, Yann Le},
year={2023},
pages={1955--1960}
}
References
- Chikhaoui, M. T., Rabenorosoa, K. & Andreff, N. Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy. Advances in Robot Kinematics 457–465 (2014) doi:10.1007/978-3-319-06698-1_47 – 10.1007/978-3-319-06698-1_47
- Shahinpoor, M. & Kim, K. J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials and Structures vol. 10 819–833 (2001) – 10.1088/0964-1726/10/4/327
- Maschke. Non-linear Control Systems (NOLCOS 1992). Proceedings of the 3rd IFAC Symposium on
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Liu, N., Wu, Y. & Le Gorrec, Y. Energy-Based Modeling of Ionic Polymer–Metal Composite Actuators Dedicated to the Control of Flexible Structures. IEEE/ASME Transactions on Mechatronics vol. 26 3139–3150 (2021) – 10.1109/tmech.2021.3053609
- Mattioni, A., Wu, Y., Ramirez, H., Le Gorrec, Y. & Macchelli, A. Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltonian approach. Control Engineering Practice vol. 101 104498 (2020) – 10.1016/j.conengprac.2020.104498
- Zhou, W., Liu, N., Wu, Y., Ramirez, H. & Le Gorrec, Y. Energy-Based Modeling and Hamiltonian LQG Control of a Flexible Beam Actuated by IPMC Actuators. IEEE Access vol. 10 12153–12163 (2022) – 10.1109/access.2022.3146367
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Transactions on Robotics vol. 23 650–660 (2007) – 10.1109/tro.2007.898990
- Selig. Geometric Fundamentals of Robotics (2005)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Nishida, G., Takagi, K., Maschke, B. & Osada, T. Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator. Control Engineering Practice vol. 19 321–334 (2011) – 10.1016/j.conengprac.2010.10.005
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Bastin, G. & Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Progress in Nonlinear Differential Equations and Their Applications (Springer International Publishing, 2016). doi:10.1007/978-3-319-32062-5 – 10.1007/978-3-319-32062-5
- Macchelli, A. Stabilisation of a Nonlinear Flexible Beam in Port-Hamiltonian Form. IFAC Proceedings Volumes vol. 46 412–417 (2013) – 10.3182/20130904-3-fr-2041.00115
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Mora, L. A. & Morris, K. Exponential Decay Rate of port-Hamiltonian Systems with one side Boundary Damping. IFAC-PapersOnLine vol. 55 400–405 (2022) – 10.1016/j.ifacol.2022.11.086