Stabilisation of a Nonlinear Flexible Beam in Port-Hamiltonian Form
Authors
Abstract
The aim of this paper is to present a simple extension of the theory of linear, distributed, port-Hamiltonian systems to the nonlinear scenario. More precisely, an algebraic nonlinear skew-symmetric term has now been included in the PDE. It is then shown that the system can be equivalently written in terms of the scattering variables, and that these variables are strictly related with the Riemann invariants that appear in quasi-linear hyperbolic PDEs. For this class of PDEs, several results about the existence of solutions, and asymptotic stability of equilibria have already been presented in literature. Here, these results have been extended and applied within the port-Hamiltonian framework, where are suitable of a nice physical interpretation. The final scope is the boundary asymptotic stabilisation of a nonlinear flexible beam with a free-end, and full actuation on the other side.
Keywords
Passivity; stabilisation; nonlinear distributed parameter systems
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2013
- Volume: 46
- Issue: 23
- Pages: 412–417
- Publisher: Elsevier BV
- DOI: 10.3182/20130904-3-fr-2041.00115
- Note: 9th IFAC Symposium on Nonlinear Control Systems
BibTeX
@article{Macchelli_2013,
title={{Stabilisation of a Nonlinear Flexible Beam in Port-Hamiltonian Form}},
volume={46},
ISSN={1474-6670},
DOI={10.3182/20130904-3-fr-2041.00115},
number={23},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Macchelli, Alessandro},
year={2013},
pages={412--417}
}
References
- Curtain, (1995)
- de Halleux, J., Prieur, C., Coron, J.-M., d’Andréa-Novel, B. & Bastin, G. Boundary feedback control in networks of open channels. Automatica 39, 1365–1376 (2003) – 10.1016/s0005-1098(03)00109-2
- Duindam, (2009)
- Jacob, (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Infinite-Dimensional Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 211–271 (2009) doi:10.1007/978-3-642-03196-0_4 – 10.1007/978-3-642-03196-0_4
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling of a Flexible Link. IEEE Trans. Robot. 23, 650–660 (2007) – 10.1109/tro.2007.898990
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Trans. Robot. 25, 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Prieur, C., Winkin, J. & Bastin, G. Robust boundary control of systems of conservation laws. Math. Control Signals Syst. 20, 173–197 (2008) – 10.1007/s00498-008-0028-x
- Simo, J. C. A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering 49, 55–70 (1985) – 10.1016/0045-7825(85)90050-7
- Stramigioli, S., van der Schaft, A., Maschke, B. & Melchiorri, C. Geometric scattering in robotic telemanipulation. IEEE Trans. Robot. Automat. 18, 588–596 (2002) – 10.1109/tra.2002.802200
- van der Schaft, (2000)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 53–130 (2009) doi:10.1007/978-3-642-03196-0_2 – 10.1007/978-3-642-03196-0_2
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176