Exponential Decay Rate of port-Hamiltonian Systems with one side Boundary Damping
Authors
Abstract
The multiplier approach is applied to a class of port-Hamiltonian systems with boundary dissipation to establish exponential decay . The exponential stability of port-Hamiltonian systems has been studied and sufficient conditions obtained. Here the decay rate Me-αt is established with M and α are in terms of system parameters. This approach is illustrated by several examples, in particular, boundary stabilization of a piezoelectric beam with magnetic effects.
Keywords
Exponential decay rate; port-Hamiltonian systems; boundary control; damping injection
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 30
- Pages: 400–405
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.11.086
- Note: 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022- Bayreuth, Germany, September 12-16, 2022
BibTeX
@article{Mora_2022,
title={{Exponential Decay Rate of port-Hamiltonian Systems with one side Boundary Damping}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.11.086},
number={30},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Mora, Luis A. and Morris, Kirsten},
year={2022},
pages={400--405}
}
References
- Cox, S. & Zuazua, E. The rate at which energy decays in a string damped at one end. Indiana University Mathematics Journal vol. 44 0–0 (1995) – 10.1512/iumj.1995.44.2001
- Curtain, (1995)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Gorain, G. C. Exponential Energy Decay Estimate for the Solutions of Internally Damped Wave Equation in a Bounded Domain. Journal of Mathematical Analysis and Applications vol. 216 510–520 (1997) – 10.1006/jmaa.1997.5678
- Jacob, B. & Kaiser, J. T. On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 3 661–666 (2019) – 10.1109/lcsys.2019.2916814
- Jacob, Observability for port-Hamiltonian systems. (2021)
- Jacob, (2012)
- Komornik, V. Rapid Boundary Stabilization of the Wave Equation. SIAM Journal on Control and Optimization vol. 29 197–208 (1991) – 10.1137/0329011
- Komornik, (1994)
- Lasiecka, I. & Triggiani, R. Uniform exponential energy decay of wave equations in a bounded region with L2(0, ∞; L2 (Γ))-feedback control in the Dirichlet boundary conditions. Journal of Differential Equations vol. 66 340–390 (1987) – 10.1016/0022-0396(87)90025-8
- Macchelli, On the control by interconnection and exponential stabilisation of infinite dimensional port-hamiltonian systems. (2016)
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Morris, Strong stabilization of piezoelectric beams with magnetic effects. (2013)
- Morris, K. A. & Özer, A. Ö. Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects. SIAM Journal on Control and Optimization vol. 52 2371–2398 (2014) – 10.1137/130918319
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramos, A. J. A., Freitas, M. M., Almeida, D. S., Jr., Jesus, S. S. & Moura, T. R. S. Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Zeitschrift für angewandte Mathematik und Physik vol. 70 (2019) – 10.1007/s00033-019-1106-2
- Ramos, A. J. A., Gonçalves, C. S. L. & Corrêa Neto, S. S. Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. ESAIM: Mathematical Modelling and Numerical Analysis vol. 52 255–274 (2018) – 10.1051/m2an/2018004
- Russell, D. L. & Weiss, G. A General Necessary Condition for Exact Observability. SIAM Journal on Control and Optimization vol. 32 1–23 (1994) – 10.1137/s036301299119795x
- Tucsnak, (2009)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, (2014)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Wang, J.-M. & Guo, B.-Z. On the stability of swelling porous elastic soils with fluid saturation by one internal damping. IMA Journal of Applied Mathematics vol. 71 565–582 (2006) – 10.1093/imamat/hxl009
- Xu, C.-Z. Exact observability and exponential stability of infinite-dimensional bilinear systems. Mathematics of Control, Signals, and Systems vol. 9 73–93 (1996) – 10.1007/bf01211519
- Zuazua, E. A remark on the observability of conservative linear systems. Contemporary Mathematics 47–59 (2012) doi:10.1090/conm/577/11462 – 10.1090/conm/577/11462
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036