Passivity Techniques and Hamiltonian Structures in Discrete Time
Authors
Dorothée Normand-Cyrot, Salvatore Monaco, Mattia Mattioni, Alessio Moreschini
Abstract
The object of this paper is to show the impact of representing discrete-time dynamics as two coupled difference/differential equations in establishing passivity properties and describing port-Hamiltonian structures as well as the related energy-based control strategies.
Keywords
Discrete-time systems; Port-Hamiltonian structures; Passivity based control; Energy-based control
Citation
- ISBN: 9783031510489
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-031-51049-6_15
- Note: International Conference on Difference Equations and Applications
BibTeX
@inbook{Normand_Cyrot_2024,
title={{Passivity Techniques and Hamiltonian Structures in Discrete Time}},
ISBN={9783031510496},
ISSN={2194-1017},
DOI={10.1007/978-3-031-51049-6_15},
booktitle={{Difference Equations, Discrete Dynamical Systems and Applications}},
publisher={Springer International Publishing},
author={Normand-Cyrot, Dorothée and Monaco, Salvatore and Mattioni, Mattia and Moreschini, Alessio},
year={2024},
pages={327--352}
}
References
- 50 Years of Dissipativity Theory, Part I [About This Issue]. IEEE Control Systems vol. 42 6–9 (2022) – 10.1109/mcs.2021.3139547
- Aoues, S., Di Loreto, M., Eberard, D. & Marquis-Favre, W. Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability. Systems & Control Letters vol. 110 9–14 (2017) – 10.1016/j.sysconle.2017.10.003
- Brogliato, B., Lozano, R., Maschke, B. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-19420-8 – 10.1007/978-3-030-19420-8
- Byrnes, C. I. & Wei Lin. Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear systems. IEEE Transactions on Automatic Control vol. 39 83–98 (1994) – 10.1109/9.273341
- Byrnes, C. I. & Wei Lin. Discrete-time lossless systems, feedback equivalence and passivity. Proceedings of 32nd IEEE Conference on Decision and Control 1775–1781 vol.2 (1993) doi:10.1109/cdc.1993.325495 – 10.1109/cdc.1993.325495
- Califano, C., Monaco, S. & Normand-Cyrot, D. Non-linear non-interacting control with stability in discrete-time: A geometric framework. International Journal of Control vol. 75 11–22 (2002) – 10.1080/0020717011092280
- Castaños, F., Michalska, H., Gromov, D., Hayward, V.: Discrete-time models for implicit port-Hamiltonian systems (2015). arXiv preprint arXiv:1501.05097
- Celledoni, E., Høiseth, E.H.: Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems (2017). arXiv preprint arXiv:1706.08621
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Fliess, M. & Normand-Cyrot, D. A Lie-theoretic approach to nonlinear discrete-time controllability via Ritt’s formal differential groups. Systems & Control Letters vol. 1 179–183 (1981) – 10.1016/s0167-6911(81)80033-3
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- Haier, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer (2006)
- Itoh, T. & Abe, K. Hamiltonian-conserving discrete canonical equations based on variational difference quotients. Journal of Computational Physics vol. 76 85–102 (1988) – 10.1016/0021-9991(88)90132-5
- Jakubczyk, B., Normand-Cyrot, D.: Automatique théorique. orbites de pseudo-groupes de difféomorphismes et commandabilité des systèmes non linéaires en temps discret. In: C.R. Acad. Se. Paris, vol. I (1984)
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik vol. 65 308–322 (2017) – 10.1515/auto-2016-0098
- DS Laila. Laila, D.S., Astolfi, A.: Discrete-time IDA-PBC design for separable Hamiltonian systems. IFAC Proc. 38(1), 838–843 (2005) (2005)
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters vol. 55 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- BM Maschke. Maschke, B.M., van der Schaft, A.J.: Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. IFAC Proc. 25(13), 359–365 (1992) (1992)
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- M Mattioni. Mattioni, M., Monaco, S., Normand-Cyrot, D.: Forwarding stabilization in discrete time. Automatica 109(108), 532 (2019) (2019)
- M Mattioni. Mattioni, M., Moreschini, A., Monaco, S., Normand-Cyrot, D.: Discrete-time energy-balance passivity-based control. Automatica 146(110), 662 (2022) (2022)
- Mattioni, M., Moreschini, A., Monaco, S. & Normand-Cyrot, D. Quaternion-Based Attitude Stabilization via Discrete-Time IDA-PBC. IEEE Control Systems Letters vol. 6 2665–2670 (2022) – 10.1109/lcsys.2022.3173509
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Monaco, S. & Normand-Cyrot, D. Invariant distributions for discrete-time nonlinear systems. Systems & Control Letters vol. 5 191–196 (1984) – 10.1016/s0167-6911(84)80102-4
- Monaco, S. & Normand-Cyrot, D. On the realization of nonlinear discrete-time systems. Systems & Control Letters vol. 5 145–152 (1984) – 10.1016/0167-6911(84)90023-9
- Monaco, S., Normand-Cyrot, D.: A lie exponential formula for the nonlinear discrete time functional expansion. In: Theory and Applications of Nonlinear Control Systems, pp. 205–213. Elsevier Sciences, North Holland (1986)
- Monaco, S. & Normand-Cyrot, D. Nonlinear Systems in Discrete Time. Algebraic and Geometric Methods in Nonlinear Control Theory 411–430 (1986) doi:10.1007/978-94-009-4706-1_21 – 10.1007/978-94-009-4706-1_21
- MONACO, S. & NORMAND-CYROT, D. Finite Volterra-series realizations and input-output approximations of non-linear discrete-time systems. International Journal of Control vol. 45 1771–1787 (1987) – 10.1080/00207178708933845
- Monaco, S., Normand-Cyrot, D.: A unified representation for nonlinear discrete-time and sampled dynamics. In: Journal of Mathematical Systems, Estimation and Control. Birkauser, Boston (1995)
- Monaco, S. & Normand-Cyrot, D. Normal forms and approximated feedback linearization in discrete time. Systems & Control Letters vol. 55 71–80 (2006) – 10.1016/j.sysconle.2005.04.016
- Monaco, S. & Normand-Cyrot, D. Advanced Tools for Nonlinear Sampled-Data Systems’ Analysis and Control. European Journal of Control vol. 13 221–241 (2007) – 10.3166/ejc.13.221-241
- Monaco, S. & Normand-Cyrot, D. Nonlinear representations and passivity conditions in discrete time. Lecture Notes in Control and Information Sciences 422–433 (1999) doi:10.1007/bfb0109884 – 10.1007/bfb0109884
- Monaco, S. & Normand-Cyrot, D. Nonlinear average passivity and stabilizing controllers in discrete time. Systems & Control Letters vol. 60 431–439 (2011) – 10.1016/j.sysconle.2011.03.010
- Monaco, S., Normand-Cyrot, D. & Califano, C. From Chronological Calculus to Exponential Representations of Continuous and Discrete-Time Dynamics: A Lie-Algebraic Approach. IEEE Transactions on Automatic Control vol. 52 2227–2241 (2007) – 10.1109/tac.2007.902734
- Monaco, S., Normand-Cyrot, D. & Tiefensee, F. From passivity under sampling to a new discrete-time passivity concept. 2008 47th IEEE Conference on Decision and Control 3157–3162 (2008) doi:10.1109/cdc.2008.4739056 – 10.1109/cdc.2008.4739056
- Monaco, S., Normand-Cyrot, D., Mattioni, M. & Moreschini, A. Nonlinear Hamiltonian Systems Under Sampling. IEEE Transactions on Automatic Control vol. 67 4598–4613 (2022) – 10.1109/tac.2022.3164985
- Moreschini, A.: Modeling and control of discrete-time and sampled-data port-Hamiltonian systems. PhD thesis, Università degli Studi di Roma La Sapienza, phD Thesis. Paris-Saclay University and Sapienza University of Rome (2021)
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Discrete port-controlled Hamiltonian dynamics and average passivation. 2019 IEEE 58th Conference on Decision and Control (CDC) 1430–1435 (2019) doi:10.1109/cdc40024.2019.9029809 – 10.1109/cdc40024.2019.9029809
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Interconnection through u-average passivity in discrete time. 2019 IEEE 58th Conference on Decision and Control (CDC) 4234–4239 (2019) doi:10.1109/cdc40024.2019.9029357 – 10.1109/cdc40024.2019.9029357
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Systems Letters vol. 5 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. A gradient descent algorithm built on approximate discrete gradients. 2022 26th International Conference on System Theory, Control and Computing (ICSTCC) 343–348 (2022) doi:10.1109/icstcc55426.2022.9931872 – 10.1109/icstcc55426.2022.9931872
- Moreschini, A., Monaco, S. & Normand-Cyrot, D. Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time. IEEE Transactions on Automatic Control vol. 69 1999–2006 (2024) – 10.1109/tac.2023.3313327
- Navarro-López, E. M. Several dissipativity and passivity implications in thelinear discrete‐time setting. Mathematical Problems in Engineering vol. 2005 599–616 (2005) – 10.1155/mpe.2005.599
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Romero, J. G., Borja, P. & Donaire, A. PID Passivity‐Based Control of Nonlinear Systems with Applications. (2021) doi:10.1002/9781119694199 – 10.1002/9781119694199
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Sepulchre, R. 50 Years of Dissipativity Theory, Part II [About This Issue]. IEEE Control Systems vol. 42 5–7 (2022) – 10.1109/mcs.2022.3156801
- Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer Science & Business Media (2012)
- M Šešlija. Šešlija, M., Scherpen, J.M., van der Schaft, A.: Port-Hamiltonian systems on discrete manifolds. IFAC Proc. 45(2), 774–779 (2012) (2012)
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica vol. 50 369–377 (2014) – 10.1016/j.automatica.2013.11.020
- Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Transactions on Robotics vol. 21 574–587 (2005) – 10.1109/tro.2004.842330
- LG Sümer. Sümer, L.G., Yalçın, Y.: A direct discrete-time IDA-PBC design method for a class of underactuated Hamiltonian systems. IFAC World Congress 18, 13456–13461 (2011) (2011)
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis vol. 45 352–393 (1972) – 10.1007/bf00276494
- YALÇIN, Y., GÖREN SÜMER, L. & KURTULAN, S. Discrete-time modeling of Hamiltonian systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES vol. 23 149–170 (2015) – 10.3906/elk-1212-23