Passivity-based second-order sliding mode control for mechanical port-Hamiltonian systems
Authors
Kohei Masutani, Naoki Sakata, Kenji Fujimoto, Ichiro Maruta
Abstract
In this paper, we propose a new second-order sliding mode controller for mechanical port-Hamiltonian systems. This paper proposes a passivity-based sliding mode controller based on kinetic-potential energy shaping (KPES). So far this type of controller was only able to achieve first-order sliding mode control, since the KPES allows one to embed a subsystem whose dimension is the same as that of the input into the closed-loop system. This paper extends the KPES to incorporate a higher-order subsystem in the closed-loop system, which enables us to obtain the subsystem that can realize second-order sliding mode control. The proposed controller is integration of a passivity-based controller and a second-order sliding mode controller which does not cause undesirable chattering phenomena. It ensures finite-time convergence of the subsystem and asymptotic stability of the entire closed-loop system by utilizing two Lyapunov functions. Moreover, due to the design freedom in selecting a Lyapunov function candidate of the KPES, it can deal with several control objectives including trajectory tracking control. A numerical example demonstrates the effectiveness of the proposed method.
Citation
- Journal: SICE Journal of Control, Measurement, and System Integration
- Year: 2025
- Volume: 18
- Issue: 1
- Pages:
- Publisher: Informa UK Limited
- DOI: 10.1080/18824889.2025.2596364
BibTeX
@article{Masutani_2025,
title={{Passivity-based second-order sliding mode control for mechanical port-Hamiltonian systems}},
volume={18},
ISSN={1884-9970},
DOI={10.1080/18824889.2025.2596364},
number={1},
journal={SICE Journal of Control, Measurement, and System Integration},
publisher={Informa UK Limited},
author={Masutani, Kohei and Sakata, Naoki and Fujimoto, Kenji and Maruta, Ichiro},
year={2025}
}References
- van der Schaft A (2000) L2 - Gain and Passivity Techniques in Nonlinear Control. Springer Londo – 10.1007/978-1-4471-0507-7
- Rodríguez H, Ortega R (2003) Stabilization of electromechanical systems via interconnection and damping assignment. Intl J Robust & Nonlinear 13(12):1095–1111. https://doi.org/10.1002/rnc.80 – 10.1002/rnc.804
- Fujimoto K, Sakai S, Sugie T (2012) Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica 48(12):3054–3063. https://doi.org/10.1016/j.automatica.2012.08.03 – 10.1016/j.automatica.2012.08.032
- Ortega R, van der Schaft A, Maschke B, Escobar G (2002) Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4):585–596. https://doi.org/10.1016/s0005-1098(01)00278- – 10.1016/s0005-1098(01)00278-3
- Fujimoto K, Sakurama K, Sugie T (2003) Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39(12):2059–2069. https://doi.org/10.1016/j.automatica.2003.07.00 – 10.1016/j.automatica.2003.07.005
- Ferguson J, Donaire A, Middleton RH (2019) Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Syst Lett 3(4):960–965. https://doi.org/10.1109/lcsys.2019.291984 – 10.1109/lcsys.2019.2919842
- Slotine J-JE, Applied nonlinear control (1991)
- Ferrara A, Incremona GP, Cucuzzella M (2019) Advanced and Optimization Based Sliding Mode Control: Theory and Application – 10.1137/1.9781611975840
- Levant A Quasi-continuous high-order sliding-mode controllers. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) 4605–461 – 10.1109/cdc.2003.1272286
- Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding Mode Control and Observation. Springer New Yor – 10.1007/978-0-8176-4893-0
- Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34(3):379–384. https://doi.org/10.1016/s0005-1098(97)00209- – 10.1016/s0005-1098(97)00209-4
- Moreno JA, Osorio M (2008) A Lyapunov approach to second-order sliding mode controllers and observers. 2008 47th IEEE Conference on Decision and Contro – 10.1109/cdc.2008.4739356
- Chalanga A, Kamal S, Fridman LM, Bandyopadhyay B, Moreno JA (2016) Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches. IEEE Trans Ind Electron 63(6):3677–3685. https://doi.org/10.1109/tie.2016.252391 – 10.1109/tie.2016.2523913
- Fujimoto K, Sakata N, Maruta I, Ferguson J (2021) A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Syst Lett 5(3):839–844. https://doi.org/10.1109/lcsys.2020.300532 – 10.1109/lcsys.2020.3005327
- Fujimoto K, Baba T, Sakata N, Maruta I (2022) A Passivity-Based Sliding Mode Controller for a Class of Electro-Mechanical Systems. IEEE Control Syst Lett 6:1208–1213. https://doi.org/10.1109/lcsys.2021.308954 – 10.1109/lcsys.2021.3089541
- Davila J, Fridman L, Levant A (2005) Second-order sliding-mode observer for mechanical systems. IEEE Trans Automat Contr 50(11):1785–1789. https://doi.org/10.1109/tac.2005.85863 – 10.1109/tac.2005.858636
- Hamada K, Borja P, Scherpen JMA, Fujimoto K, Maruta I (2021) Passivity-Based Lag-Compensators With Input Saturation for Mechanical Port-Hamiltonian Systems Without Velocity Measurements. IEEE Control Syst Lett 5(4):1285–1290. https://doi.org/10.1109/lcsys.2020.303289 – 10.1109/lcsys.2020.3032890
- Ferguson J, Donaire A, Ortega R, Middleton RH (2020) Matched Disturbance Rejection for a Class of Nonlinear Systems. IEEE Trans Automat Contr 65(4):1710–1715. https://doi.org/10.1109/tac.2019.293339 – 10.1109/tac.2019.2933398
- Masutani K, Sakata N, Fujimoto K, Maruta I (2024) Passivity-based second-order sliding mode control via the homogeneous Lyapunov approach for mechanical port-Hamiltonian systems. IFAC-PapersOnLine 58(6):7–12. https://doi.org/10.1016/j.ifacol.2024.08.24 – 10.1016/j.ifacol.2024.08.248
- Masutani K, SICE Festival with Annual Conference (SICE FES) (2024)
- Romero JG, Ortega R, Sarras I (2015) A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Trans Automat Contr 60(3):818–823. https://doi.org/10.1109/tac.2014.233070 – 10.1109/tac.2014.2330701