A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems
Authors
Kenji Fujimoto, Naoki Sakata, Ichiro Maruta, Joel Ferguson
Abstract
This letter proposes a novel framework to design a passivity based sliding mode controller for mechanical systems described by simple port-Hamiltonian systems. For this class of systems, passivity based control is often used to design a stabilizing controller which employs a physical energy of the plant system as a Lyapunov function candidate. This letter proves that there exist a special class of passivity based controllers which coincide with sliding mode ones. This approach enables us to obtain sliding mode control systems with explicit energy based Lyapunov functions. The proposed approach requires a kind of matching condition under which the two control schemes coincide with each other. How to relax the condition is also discussed. Furthermore, a numerical example demonstrates how the proposed method works.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2021
- Volume: 5
- Issue: 3
- Pages: 839–844
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2020.3005327
BibTeX
@article{Fujimoto_2021,
title={{A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems}},
volume={5},
ISSN={2475-1456},
DOI={10.1109/lcsys.2020.3005327},
number={3},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Fujimoto, Kenji and Sakata, Naoki and Maruta, Ichiro and Ferguson, Joel},
year={2021},
pages={839--844}
}
References
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Systems Letters vol. 3 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015) – 10.1109/tac.2014.2330701
- Polyakov, A. & Fridman, L. Stability notions and Lyapunov functions for sliding mode control systems. Journal of the Franklin Institute vol. 351 1831–1865 (2014) – 10.1016/j.jfranklin.2014.01.002
- Levant, A. Quasi-continuous high-order sliding-mode controllers. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) 4605–4610 doi:10.1109/cdc.2003.1272286 – 10.1109/cdc.2003.1272286
- Brogliato, B. Nonsmooth Mechanics. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0557-2 – 10.1007/978-1-4471-0557-2
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927
- slotine, Applied nonlinear control (1991)
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283
- Trip, S., Cucuzzella, M., De Persis, C., van der Schaft, A. & Ferrara, A. Passivity-Based Design of Sliding Modes for Optimal Load Frequency Control. IEEE Transactions on Control Systems Technology vol. 27 1893–1906 (2019) – 10.1109/tcst.2018.2841844
- Ferrara, A., Incremona, G. P. & Cucuzzella, M. Advanced and Optimization Based Sliding Mode Control: Theory and Applications. (2019) doi:10.1137/1.9781611975840 – 10.1137/1.9781611975840
- Brogliato, B., Lozano, R., Maschke, B. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-19420-8 – 10.1007/978-3-030-19420-8
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Moreno, J. A. Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms. Lecture Notes in Control and Information Sciences 113–149 (2011) doi:10.1007/978-3-642-22164-4_4 – 10.1007/978-3-642-22164-4_4