Passivity-Based Lag-Compensators With Input Saturation for Mechanical Port-Hamiltonian Systems Without Velocity Measurements
Authors
Kiyoshi Hamada, Pablo Borja, Jacquelien M. A. Scherpen, Kenji Fujimoto, Ichiro Maruta
Abstract
In this letter, we propose a passivity-based control technique, where the resulting controllers can be interpreted as lag-compensators for nonlinear mechanical systems described in the port-Hamiltonian framework. The proposed methodology considers a dynamic controller such that the relationship between the control input and the error signal of interest can be expressed in terms of a transfer function. Accordingly, the control gains can be tuned through a frequency analysis approach. Additionally, two practical advantages of the resulting controllers are that they do not require velocity measurements, and they can cope with input saturation. We illustrate the applicability of the proposed methodology through the stabilization of a planar manipulator, where the experimental results corroborate the effectiveness of the technique.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2021
- Volume: 5
- Issue: 4
- Pages: 1285–1290
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2020.3032890
BibTeX
@article{Hamada_2021,
title={{Passivity-Based Lag-Compensators With Input Saturation for Mechanical Port-Hamiltonian Systems Without Velocity Measurements}},
volume={5},
ISSN={2475-1456},
DOI={10.1109/lcsys.2020.3032890},
number={4},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Hamada, Kiyoshi and Borja, Pablo and Scherpen, Jacquelien M. A. and Fujimoto, Kenji and Maruta, Ichiro},
year={2021},
pages={1285--1290}
}
References
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Dirksz, D. A. & Scherpen, J. M. A. Tuning of dynamic feedback control for nonlinear mechanical systems. 2013 European Control Conference (ECC) 173–178 (2013) doi:10.23919/ecc.2013.6669346 – 10.23919/ecc.2013.6669346
- ogata, Modern Control Engineering (2002)
- astrom, Integrator windup and how to avoid it. Proc IEEE Amer Control Conf (1989)
- Dirksz, D. A. & Scherpen, J. M. A. On Tracking Control of Rigid-Joint Robots With Only Position Measurements. IEEE Transactions on Control Systems Technology vol. 21 1510–1513 (2013) – 10.1109/tcst.2012.2204886
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Matched Disturbance Rejection for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control vol. 65 1710–1715 (2020) – 10.1109/tac.2019.2933398
- Wesselink, T. C., Borja, P. & Scherpen, J. M. A. Saturated control without velocity measurements for planar robots with flexible joints. 2019 IEEE 58th Conference on Decision and Control (CDC) 7093–7098 (2019) doi:10.1109/cdc40024.2019.9029741 – 10.1109/cdc40024.2019.9029741
- khalil, Nonlinear Systems (2002)
- 2 DOF Serial Flexible Joint Reference Manual (2013)
- ortega, Passivity-based control of Euler-Lagrange Systems Mechanical Electrical and Electromechanical Applications (2013)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Sakai, S. & Stramigioli, S. Passivity based force control of hydraulic robots. IFAC Proceedings Volumes vol. 42 20–25 (2009) – 10.3182/20090909-4-jp-2010.00006
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Romero, J. G., Donaire, A., Ortega, R. & Borja, P. Global Stabilisation of Underactuated Mechanical Systems via PID Passivity-Based Control. IFAC-PapersOnLine vol. 50 9577–9582 (2017) – 10.1016/j.ifacol.2017.08.1674