Matched Disturbance Rejection for a Class of Nonlinear Systems
Authors
Joel Ferguson, Alejandro Donaire, Romeo Ortega, Richard H. Middleton
Abstract
In this paper, we present a method to robustify asymptotically stable nonlinear systems by adding an integral action that rejects unknown additive disturbances. The proposed approach uses a port-Hamiltonian (pH) representation of the open-loop dynamics, which, relying on the asymptotic stability property, is guaranteed to exist. The integral action controller preserves the pH structure, and, by adding a suitable cross term between the plant and the controller states to the closed-loop energy function, it avoids the unnatural coordinate transformation used in the past. The controller is shown to be robust against some common types of modeling uncertainty, including unknown friction dynamics in mechanical systems.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2020
- Volume: 65
- Issue: 4
- Pages: 1710–1715
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2019.2933398
BibTeX
@article{Ferguson_2020,
title={{Matched Disturbance Rejection for a Class of Nonlinear Systems}},
volume={65},
ISSN={2334-3303},
DOI={10.1109/tac.2019.2933398},
number={4},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Ferguson, Joel and Donaire, Alejandro and Ortega, Romeo and Middleton, Richard H.},
year={2020},
pages={1710--1715}
}
References
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Transactions on Automatic Control vol. 52 1093–1099 (2007) – 10.1109/tac.2007.899064
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Donaire, A., Romero, J. G., Ortega, R., Siciliano, B. & Crespo, M. Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. International Journal of Robust and Nonlinear Control vol. 27 1000–1016 (2016) – 10.1002/rnc.3615
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Ferguson, J., Middleton, R. H. & Donaire, A. Disturbance rejection via control by interconnection of port-Hamiltonian systems. 2015 54th IEEE Conference on Decision and Control (CDC) 507–512 (2015) doi:10.1109/cdc.2015.7402279 – 10.1109/cdc.2015.7402279
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Transactions on Automatic Control vol. 62 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Robust integral action of port-Hamiltonian systems. IFAC-PapersOnLine vol. 51 181–186 (2018) – 10.1016/j.ifacol.2018.06.050
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Matched disturbance rejection for energy-shaping controlled underactuated mechanical systems. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 1484–1489 (2017) doi:10.1109/cdc.2017.8263862 – 10.1109/cdc.2017.8263862
- Petrovic, V., Ortega, R. & Stankovi, A. M. Interconnection and damping assignment approach to control of PM synchronous motors. IEEE Transactions on Control Systems Technology vol. 9 811–820 (2001) – 10.1109/87.960344
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- bacha, Power Electronic Converters Modelling and Control with Case Studies (2013)
- Batlle, C., Dòria-Cerezo, A., Espinosa-Pérez, G. & Ortega, R. Simultaneous interconnection and damping assignment passivity-based control: the induction machine case study. International Journal of Control vol. 82 241–255 (2009) – 10.1080/00207170802050817
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control vol. 10 451–468 (2004) – 10.3166/ejc.10.451-468
- Lee, J. M. Introduction to Smooth Manifolds. Graduate Texts in Mathematics (Springer New York, 2012). doi:10.1007/978-1-4419-9982-5 – 10.1007/978-1-4419-9982-5