Passivity-based second-order sliding mode control via the homogeneous Lyapunov approach for mechanical port-Hamiltonian systems
Authors
K. Masutani, N. Sakata, K. Fujimoto, I. Maruta
Abstract
In this work, a new second-order sliding mode controller for mechanical port-Hamiltonian systems is proposed. The authors’ former paper proposed a passivity-based sliding mode controller based on the kinetic-potential energy shaping (KPES). This controller is able to achieve only first-order sliding mode control since the KPES allows us to embed a subsystem, whose dimension is the same as that of the input, into the closed-loop system. The present paper extends the KPES to incorporate a higher-order subsystem in the closed-loop system, which enables us to obtain the subsystem that can realize second-order sliding mode control. The proposed controller is a unification of a passivity-based controller and a second-order sliding mode controller which does not cause undesirable chattering phenomena. It ensures finite-time convergence of the subsystem and asymptotic stability of the entire closed-loop system by utilizing two Lyapunov functions. A numerical example demonstrates the effectiveness of the proposed method.
Keywords
Port-Hamiltonian systems; Passivity-based control; Nonlinear control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 7–12
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.248
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Masutani_2024,
title={{Passivity-based second-order sliding mode control via the homogeneous Lyapunov approach for mechanical port-Hamiltonian systems}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.248},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Masutani, K. and Sakata, N. and Fujimoto, K. and Maruta, I.},
year={2024},
pages={7--12}
}
References
- Bacciotti, (2005)
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Systems Letters vol. 3 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Matched Disturbance Rejection for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control vol. 65 1710–1715 (2020) – 10.1109/tac.2019.2933398
- Ferrara, (2019)
- Fujimoto, K., Baba, T., Sakata, N. & Maruta, I. A Passivity-Based Sliding Mode Controller for a Class of Electro-Mechanical Systems. IEEE Control Systems Letters vol. 6 1208–1213 (2022) – 10.1109/lcsys.2021.3089541
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 5 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Levant, A. Homogeneity approach to high-order sliding mode design. Automatica vol. 41 823–830 (2005) – 10.1016/j.automatica.2004.11.029
- Moreno, (2008)
- Rodríguez, H. & Ortega, R. Stabilization of electromechanical systems via interconnection and damping assignment. International Journal of Robust and Nonlinear Control vol. 13 1095–1111 (2003) – 10.1002/rnc.804
- Shtessel, (2014)
- Slotine, (1991)
- van der Schaft, (2000)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010