On the Equivalence of Geometric and Descriptor Representations of Linear Port-Hamiltonian Systems
Authors
Hannes Gernandt, Friedrich M. Philipp, Till Preuster, Manuel Schaller
Abstract
We prove a one-to-one correspondence between the geometric formulation of port-Hamiltonian (pH) systems defined by Dirac structures, Lagrange structures, maximal resistive structures, and external ports and a state-space formulation by means of port-Hamiltonian descriptor systems, i.e., differential algebraic equations (DAE) with inputs and outputs.
Keywords
Port-Hamiltonian systems; Multi-valued linear algebra; Descriptor systems
Citation
- ISBN: 9783031649905
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-64991-2_6
- Note: Workshop on Systems Theory and PDEs
BibTeX
@inbook{Gernandt_2024,
title={{On the Equivalence of Geometric and Descriptor Representations of Linear Port-Hamiltonian Systems}},
ISBN={9783031649912},
ISSN={2297-024X},
DOI={10.1007/978-3-031-64991-2_6},
booktitle={{Systems Theory and PDEs}},
publisher={Springer Nature Switzerland},
author={Gernandt, Hannes and Philipp, Friedrich M. and Preuster, Till and Schaller, Manuel},
year={2024},
pages={149--165}
}
References
- Behrndt, J., Hassi, S. & de Snoo, H. Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics (Springer International Publishing, 2020). doi:10.1007/978-3-030-36714-5 – 10.1007/978-3-030-36714-5
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Berger, T., Trunk, C. & Winkler, H. Linear relations and the Kronecker canonical form. Linear Algebra and its Applications vol. 488 13–44 (2016) – 10.1016/j.laa.2015.09.033
- Cherifi, K., Gernandt, H. & Hinsen, D. The difference between port-Hamiltonian, passive and positive real descriptor systems. Mathematics of Control, Signals, and Systems vol. 36 451–482 (2023) – 10.1007/s00498-023-00373-2
- Cherifi, K., Gernandt, H., Hinsen, D. & Mehrmann, V. On discrete-time dissipative port-Hamiltonian (descriptor) systems. Mathematics of Control, Signals, and Systems vol. 36 561–599 (2023) – 10.1007/s00498-023-00376-z
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Faulwasser, T., Maschke, B., Philipp, F., Schaller, M. & Worthmann, K. Optimal Control of Port-Hamiltonian Descriptor Systems with Minimal Energy Supply. SIAM Journal on Control and Optimization vol. 60 2132–2158 (2022) – 10.1137/21m1427723
- Favini, A. & Yagi, A. Degenerate Differential Equations in Banach Spaces. (1998) doi:10.1201/9781482276022 – 10.1201/9781482276022
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- Ilchmann, A., Kirchhoff, J. & Schaller, M. Port-Hamiltonian descriptor systems are relative generically controllable and stabilizable. Mathematics of Control, Signals, and Systems vol. 37 23–59 (2024) – 10.1007/s00498-024-00392-7
- Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mehl, C., Mehrmann, V. & Wojtylak, M. Distance problems for dissipative Hamiltonian systems and related matrix polynomials. Linear Algebra and its Applications vol. 623 335–366 (2021) – 10.1016/j.laa.2020.05.026
- Mehl, C., Mehrmann, V. & Wojtylak, M. Matrix Pencils with Coefficients that have Positive Semidefinite Hermitian Parts. SIAM Journal on Matrix Analysis and Applications vol. 43 1186–1212 (2022) – 10.1137/21m1439997
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- Sviridyuk, G. A. & Fedorov, V. E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. (2003) doi:10.1515/9783110915501 – 10.1515/9783110915501
- Skrepek, N. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory vol. 10 965 (2021) – 10.3934/eect.2020098
- Seifert, C., Trostorff, S. & Waurick, M. Evolutionary Equations. Operator Theory: Advances and Applications (Springer International Publishing, 2022). doi:10.1007/978-3-030-89397-2 – 10.1007/978-3-030-89397-2
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Mehrmann, V. Linear port-Hamiltonian DAE systems revisited. Systems & Control Letters vol. 177 105564 (2023) – 10.1016/j.sysconle.2023.105564