Matrix Pencils with Coefficients that have Positive Semidefinite Hermitian Parts
Authors
C. Mehl, V. Mehrmann, M. Wojtylak
Abstract
We analyze when an arbitrary matrix pencil is equivalent to a dissipative Hamiltonian pencil and show that this heavily restricts the spectral properties. In order to relax the spectral properties, we introduce matrix pencils with coefficients that have positive semidefinite Hermitian parts. We will make a detailed analysis of their spectral properties and their numerical range. In particular, we relate the Kronecker structure of these pencils to that of an underlying skew-Hermitian pencil and discuss their regularity, index, numerical range, and location of eigenvalues. Further, we study matrix polynomials with positive semidefinite Hermitian coefficients and use linearizations with positive semidefinite Hermitian parts to derive sufficient conditions for a spectrum in the left half plane and derive bounds on the index.
Citation
- Journal: SIAM Journal on Matrix Analysis and Applications
- Year: 2022
- Volume: 43
- Issue: 3
- Pages: 1186–1212
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/21m1439997
BibTeX
@article{Mehl_2022,
title={{Matrix Pencils with Coefficients that have Positive Semidefinite Hermitian Parts}},
volume={43},
ISSN={1095-7162},
DOI={10.1137/21m1439997},
number={3},
journal={SIAM Journal on Matrix Analysis and Applications},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Mehl, C. and Mehrmann, V. and Wojtylak, M.},
year={2022},
pages={1186--1212}
}
References
- Altmann, R., Mehrmann, V. & Unger, B. Port-Hamiltonian formulations of poroelastic network models. Mathematical and Computer Modelling of Dynamical Systems vol. 27 429–452 (2021) – 10.1080/13873954.2021.1975137
- Anđelić, M. & da Fonseca, C. M. Sufficient conditions for positive definiteness of tridiagonal matrices revisited. Positivity vol. 15 155–159 (2010) – 10.1007/s11117-010-0047-y
- Antoniou, E. & Vologiannidis, S. A new family of companion forms of polynomial matrices. The Electronic Journal of Linear Algebra vol. 11 (2004) – 10.13001/1081-3810.1124
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bebiano N., Applied and Computational Matrix Analysis: MAT-TRIAD (2015)
- Benner P., private communication (2021)
- Cowling, V. F. & Thron, W. J. Zero-Free Regions of Polynomials. The American Mathematical Monthly vol. 61 682–687 (1954) – 10.1080/00029890.1954.11988549
- De Terán, F., Dopico, F. M. & Mackey, D. S. Fiedler Companion Linearizations and the Recovery of Minimal Indices. SIAM Journal on Matrix Analysis and Applications vol. 31 2181–2204 (2010) – 10.1137/090772927
- Faulwasser T., Optimal Control of Port-Hamiltonian Descriptor Systems with Minimal Energy Supply, preprint, arXiv:2106.06571 [math.OC] (2021)
- Gantmacher F. R., Theory of Matrices (1959)
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- Gillis, N., Mehrmann, V. & Sharma, P. Computing the nearest stable matrix pairs. Numerical Linear Algebra with Applications vol. 25 (2018) – 10.1002/nla.2153
- Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C. & von Wagner, U. Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 96 1388–1405 (2016) – 10.1002/zamm.201500217
- Gutkin, E., Jonckheere, E. A. & Karow, M. Convexity of the joint numerical range: topological and differential geometric viewpoints. Linear Algebra and its Applications vol. 376 143–171 (2004) – 10.1016/j.laa.2003.06.011
- Higham, N. J., Mackey, D. S., Mackey, N. & Tisseur, F. Symmetric Linearizations for Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications vol. 29 143–159 (2007) – 10.1137/050646202
- Horn R. A., Matrix Analysis (2013)
- Johnson, C. R., Neumann, M. & Tsatsomeros, M. J. Conditions for the positivity of determinants. Linear and Multilinear Algebra vol. 40 241–248 (1996) – 10.1080/03081089608818442
- Kaltenbacher, B. & Nikolić, V. The Jordan–Moore–Gibson–Thompson Equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. Mathematical Models and Methods in Applied Sciences vol. 29 2523–2556 (2019) – 10.1142/s0218202519500532
- Koval V., Matrix Pencils with the Numerical Range Equal to the Whole Complex Plane, preprint, arXiv:2205.05051 [math.NA] (2022)
- Li, C.-K. & Rodman, L. Numerical Range of Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications vol. 15 1256–1265 (1994) – 10.1137/s0895479893249630
- Liesen, J. & Mehrmann, V. Linear Algebra. Springer Undergraduate Mathematics Series (Springer International Publishing, 2015). doi:10.1007/978-3-319-24346-7 – 10.1007/978-3-319-24346-7
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mehl, C., Mehrmann, V. & Wojtylak, M. Distance problems for dissipative Hamiltonian systems and related matrix polynomials. Linear Algebra and its Applications vol. 623 335–366 (2021) – 10.1016/j.laa.2020.05.026
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Psarrakos, P. J. Definite triples of Hermitian matrices and matrix polynomials. Journal of Computational and Applied Mathematics vol. 151 39–58 (2003) – 10.1016/s0377-0427(02)00736-7
- Psarrakos, P. J. Numerical range of linear pencils. Linear Algebra and its Applications vol. 317 127–141 (2000) – 10.1016/s0024-3795(00)00145-2
- Thompson, R. C. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil. Linear Algebra and its Applications vol. 14 135–177 (1976) – 10.1016/0024-3795(76)90021-5
- Thompson, R. C. Pencils of complex and real symmetric and skew matrices. Linear Algebra and its Applications vol. 147 323–371 (1991) – 10.1016/0024-3795(91)90238-r
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008