On discrete-time dissipative port-Hamiltonian (descriptor) systems
Authors
Karim Cherifi, Hannes Gernandt, Dorothea Hinsen, Volker Mehrmann
Abstract
Port-Hamiltonian (pH) systems have been studied extensively for linear continuous-time dynamical systems. This manuscript presents a discrete-time pH descriptor formulation for linear, completely causal, scattering passive dynamical systems based on the system coefficients. The relation of this formulation to positive and bounded real systems and the characterization via positive semidefinite solutions of Kalman–Yakubovich–Popov inequalities is also studied.
Keywords
Port-Hamiltonian system; Differential-algebraic equation; Descriptor system; Discrete-time system; Scattering passive system; Impedance passive system; Positive real system; Bounded real system; Kalman–Yakubovich–Popov inequality; Primary 34A09; 93C05; 93C55; Secondary 15A39
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2024
- Volume: 36
- Issue: 3
- Pages: 561–599
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-023-00376-z
BibTeX
@article{Cherifi_2023,
title={{On discrete-time dissipative port-Hamiltonian (descriptor) systems}},
volume={36},
ISSN={1435-568X},
DOI={10.1007/s00498-023-00376-z},
number={3},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Cherifi, Karim and Gernandt, Hannes and Hinsen, Dorothea and Mehrmann, Volker},
year={2023},
pages={561--599}
}
References
- Achleitner, F., Arnold, A. & Mehrmann, V. Hypocoercivity and hypocontractivity concepts for linear dynamical systems. The Electronic Journal of Linear Algebra vol. 39 33–61 (2023) – 10.13001/ela.2023.7531
- CHUANG, K. A Study of State Spaces and Conditional Probability Distributions of a Class of Distributed Parameter Stochastic Systems. International Journal of Control vol. 5 171–177 (1967) – 10.1080/00207176708921753
- Bankmann, D. & Voigt, M. On linear-quadratic optimal control of implicit difference equations. IMA Journal of Mathematical Control and Information vol. 36 779–833 (2018) – 10.1093/imamci/dny007
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- Beattie C, Mehrmann v, Xu H (2015) Port-Hamiltonian realizations of linear time invariant systems. Preprint 23-2015, Institut für Mathematik, TU Berlin. arXiv:2201.05355
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Berger, T., Ilchmann, A. & Trenn, S. The quasi-Weierstraß form for regular matrix pencils. Linear Algebra and its Applications vol. 436 4052–4069 (2012) – 10.1016/j.laa.2009.12.036
- Berger, T. & Reis, T. Controllability of Linear Differential-Algebraic Systems—A Survey. Surveys in Differential-Algebraic Equations I 1–61 (2013) doi:10.1007/978-3-642-34928-7_1 – 10.1007/978-3-642-34928-7_1
- Berger, T., Reis, T. & Trenn, S. Observability of Linear Differential-Algebraic Systems: A Survey. Differential-Algebraic Equations Forum 161–219 (2017) doi:10.1007/978-3-319-46618-7_4 – 10.1007/978-3-319-46618-7_4
- Bradde, T., Grivet-Talocia, S., Zanco, A. & Calafiore, G. C. Data-Driven Extraction of Uniformly Stable and Passive Parameterized Macromodels. IEEE Access vol. 10 15786–15804 (2022) – 10.1109/access.2022.3147034
- Brogliato, B., Lozano, R., Maschke, B. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer International Publishing, 2020). doi:10.1007/978-3-030-19420-8 – 10.1007/978-3-030-19420-8
- T Brüll. Brüll T (2009) Explicit solutions of regular linear discrete-time descriptor systems with constant coefficients. ELA Electron J Linear Algebra (electronic only) 18:317–338 (2009)
- Bunse-Gerstner, A., Byers, R., Mehrmann, V. & Nichols, N. K. Feedback design for regularizing descriptor systems. Linear Algebra and its Applications vol. 299 119–151 (1999) – 10.1016/s0024-3795(99)00167-6
- Camlibel, M. K. & Frasca, R. Extension of Kalman–Yakubovich–Popov lemma to descriptor systems. Systems & Control Letters vol. 58 795–803 (2009) – 10.1016/j.sysconle.2009.08.010
- Campbell, S. L. Nonregular Singular Dynamic Leontief Systems. Econometrica vol. 47 1565 (1979) – 10.2307/1914020
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Chen, T. & Francis, B. A. Input-output stability of sampled-data systems. IEEE Transactions on Automatic Control vol. 36 50–58 (1991) – 10.1109/9.62267
- Cherifi, K., Gernandt, H. & Hinsen, D. The difference between port-Hamiltonian, passive and positive real descriptor systems. Mathematics of Control, Signals, and Systems vol. 36 451–482 (2023) – 10.1007/s00498-023-00373-2
- Singular Control Systems. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1989). doi:10.1007/bfb0002475 – 10.1007/bfb0002475
- Du, N. H., Linh, V. H. & Mehrmann, V. Robust Stability of Differential-Algebraic Equations. Surveys in Differential-Algebraic Equations I 63–95 (2013) doi:10.1007/978-3-642-34928-7_2 – 10.1007/978-3-642-34928-7_2
- Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences vol. 6 273 (2016) – 10.3390/app6100273
- GF Franklin. Franklin GF, Powell JD, Workman ML (1998) Digital control of dynamic systems. Addison-Wesley, Reading (1998)
- Freund, R. W. & Jarre, F. An extension of the positive real lemma to descriptor systems. Optimization Methods and Software vol. 19 69–87 (2004) – 10.1080/10556780410001654232
- FR Gantmacher. Gantmacher FR (1959) The theory of matrices, vol 2. Chelsea, New York (1959)
- Gernandt, H. & Haller, F. E. On the stability of port-Hamiltonian descriptor systems. IFAC-PapersOnLine vol. 54 137–142 (2021) – 10.1016/j.ifacol.2021.11.068
- GH Golub. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)
- GC Goodwin. Goodwin GC, Sin KS (1984) Adaptive filtering prediction and control. Information and systems sciences series. Prentice-Hall, Upper Saddle River (1984)
- Grivet‐Talocia, S. & Gustavsen, B. Passive Macromodeling. (2015) doi:10.1002/9781119140931 – 10.1002/9781119140931
- Haddad, W. M. & Chellaboina, V. Nonlinear Dynamical Systems and Control. (2011) doi:10.2307/j.ctvcm4hws – 10.2307/j.ctvcm4hws
- E Haier. Haier E, Lubich C, Wanner G (2006) Geometric Numerical integration: structure-preserving algorithms for ordinary differential equations. Springer, Berlin (2006)
- Heij, C., Ran, A. C. M. & van Schagen, F. Introduction to Mathematical Systems Theory. (Springer International Publishing, 2021). doi:10.1007/978-3-030-59654-5 – 10.1007/978-3-030-59654-5
- Hitz, L. & Anderson, B. D. O. Discrete positive-real functions and their application to system stability. Proceedings of the Institution of Electrical Engineers vol. 116 153 (1969) – 10.1049/piee.1969.0031
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Kurula, M. & Staffans, O. A complete model of a finite-dimensional impedance-passive system. Mathematics of Control, Signals, and Systems vol. 19 23–63 (2006) – 10.1007/s00498-006-0008-y
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters vol. 55 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- La Salle, J. P. The Stability of Dynamical Systems. (1976) doi:10.1137/1.9781611970432 – 10.1137/1.9781611970432
- Li Lee & Jian Liung Chen. Strictly positive real lemma for discrete-time descriptor systems. Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187) vol. 4 3666–3667 – 10.1109/cdc.2000.912277
- Livšic MS (1973) Operators, oscillations, waves. Open systems. Translations of mathematical monographs, vol. 34. American Mathematical Society, Providence
- Luenberger, D. Dynamic equations in descriptor form. IEEE Transactions on Automatic Control vol. 22 312–321 (1977) – 10.1109/tac.1977.1101502
- DG Luenberger. Luenberger DG, Arbel A (1977) Singular dynamic leontief systems. Econom J Econom Soc 45:991–995 (1977)
- Macchelli, A. Trajectory Tracking for Discrete-Time Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 6 3146–3151 (2022) – 10.1109/lcsys.2022.3182845
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1991). doi:10.1007/bfb0039443 – 10.1007/bfb0039443
- Mehrmann, V. A step toward a unified treatment of continuous and discrete time control problems. Linear Algebra and its Applications vols 241–243 749–779 (1996) – 10.1016/0024-3795(95)00257-x
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- DOI not foun – 10.1017/s096492922000083
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Mathematics of Control, Signals, and Systems vol. 35 541–584 (2023) – 10.1007/s00498-023-00349-2
- P Mellodge. Mellodge P (2016) A practical approach to dynamical systems for engineers. Woodhead Publishing, Amsterdam (2016)
- Mertzios, B. G. & Lewis, F. L. Fundamental matrix of discrete singular systems. Circuits, Systems, and Signal Processing vol. 8 341–355 (1989) – 10.1007/bf01598419
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Discrete port-controlled Hamiltonian dynamics and average passivation. 2019 IEEE 58th Conference on Decision and Control (CDC) 1430–1435 (2019) doi:10.1109/cdc40024.2019.9029809 – 10.1109/cdc40024.2019.9029809
- AV Oppenheim. Oppenheim AV, Willsky AS, Nawab H (1996) Signals and systems. Prentice-Hall, Upper Saddle River (1996)
- Reis, T., Rendel, O. & Voigt, M. The Kalman–Yakubovich–Popov inequality for differential-algebraic systems. Linear Algebra and its Applications vol. 485 153–193 (2015) – 10.1016/j.laa.2015.06.021
- Reis, T. & Stykel, T. Positive real and bounded real balancing for model reduction of descriptor systems. International Journal of Control vol. 83 74–88 (2009) – 10.1080/00207170903100214
- Sokolov VI (2006) Contributions to the minimal realization problem for descriptor systems. Ph.D. thesis, Technical University of Chemnitz
- Staffans, O. J. Passive and Conservative Infinite-Dimensional Impedance and Scattering Systems (From a Personal Point of View). The IMA Volumes in Mathematics and its Applications 375–413 (2003) doi:10.1007/978-0-387-21696-6_14 – 10.1007/978-0-387-21696-6_14
- Staffans, O. J. & Weiss, G. A Physically Motivated Class of Scattering Passive Linear Systems. SIAM Journal on Control and Optimization vol. 50 3083–3112 (2012) – 10.1137/110846403
- Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Transactions on Robotics vol. 21 574–587 (2005) – 10.1109/tro.2004.842330
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- Vaidyanathan, P. The discrete-time bounded-real lemma in digital filtering. IEEE Transactions on Circuits and Systems vol. 32 918–924 (1985) – 10.1109/tcs.1985.1085815
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Willems, J. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Transactions on Automatic Control vol. 16 621–634 (1971) – 10.1109/tac.1971.1099831
- JC Willems. Willems JC (1972) Dissipative dynamical systems—part 2: linear systems with quadratic supply rates. Sov J Opt Technol (English translation of Optiko-Mekhanicheskaya Promyshlennost) 45(5):352–393 (1972)
- C Xiao. Xiao C, Hill DJ (1999) Generalizations and new proof of the discrete-time positive real lemma and bounded real lemma. IEEE Trans Circ Syst I Fund Theory Appl 46(6):740–743 (1999)
- YALÇIN, Y., GÖREN SÜMER, L. & KURTULAN, S. Discrete-time modeling of Hamiltonian systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES vol. 23 149–170 (2015) – 10.3906/elk-1212-23