Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems
Authors
Antoine Tordeux, Claudia Totzeck
Abstract
Port-Hamiltonian systems (PHS) theory is a recent but already well-established modelling approach for non-linear physical systems. Some studies have shown lately that PHS frameworks are relevant for modelling and control of swarm and multi-agent systems. We identify in this contribution a general class of microscopic force-based pedestrian models that can be formulated as a port-Hamiltonian system. The pedestrian PHS has linear structure and dissipation components. Non-linear effects come from isotropic pedestrian interactions. Simulation results on a torus with disordered initial states show that the port-Hamiltonian pedestrian model can exhibit different types of dynamics. They range from relaxed speed models with no interaction, dynamical billiards, or crystallization dynamics to realistic pedestrian collective behaviors, including lane and strip formation for counter and crossing flow. The port-Hamiltonian framework is a natural multiscale description of pedestrian dynamics as the Hamiltonian turns out to be a generic order parameter that allows us to identify specific behaviours of the dynamics from a macroscopic viewpoint. Particular cases even enable through energy balance to determine the Hamiltonian behavior without requiring the tedious computation of the microscopic dynamics. Using PHS theory, we systematically identify a critical threshold value for the Hamiltonian, which relies only on exogenous input and can be physically interpreted.
Citation
- Journal: Networks and Heterogeneous Media
- Year: 2023
- Volume: 18
- Issue: 2
- Pages: 906–929
- Publisher: American Institute of Mathematical Sciences (AIMS)
- DOI: 10.3934/nhm.2023039
BibTeX
@article{Tordeux_2023,
title={{Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems}},
volume={18},
ISSN={1556-1801},
DOI={10.3934/nhm.2023039},
number={2},
journal={Networks and Heterogeneous Media},
publisher={American Institute of Mathematical Sciences (AIMS)},
author={Tordeux, Antoine and Totzeck, Claudia},
year={2023},
pages={906--929}
}
References
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: A generalization of Noether’s theorem. Systems & Control Letters vol. 1 108–115 (1981) – 10.1016/s0167-6911(81)80046-1
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Knorn, S., Chen, Z. & Middleton, R. H. Overview: Collective Control of Multiagent Systems. IEEE Transactions on Control of Network Systems vol. 3 334–347 (2016) – 10.1109/tcns.2015.2468991
- Knorn, S. & Ahlén, A. Deviation bounds in multi agent systems described by undirected graphs. Automatica vol. 67 205–210 (2016) – 10.1016/j.automatica.2016.01.038
- Knorn, S. & Ahlén, A. Deviation bounds in multi agent systems described by undirected graphs. Automatica vol. 67 205–210 (2016) – 10.1016/j.automatica.2016.01.038
- Cristofaro, A., Giunta, G. & Giordano, P. R. Fault-Tolerant Formation Control of Passive Multi-Agent Systems Using Energy Tanks. IEEE Control Systems Letters vol. 6 2551–2556 (2022) – 10.1109/lcsys.2022.3169308
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms. IFAC Proceedings Volumes vol. 43 175–178 (2010) – 10.3182/20100913-2-fr-4014.00012
- Xue, D., Hirche, S. & Cao, M. Opinion Behavior Analysis in Social Networks Under the Influence of Coopetitive Media. IEEE Transactions on Network Science and Engineering vol. 7 961–974 (2020) – 10.1109/tnse.2019.2894565
- Sharf, M. & Zelazo, D. Analysis and Synthesis of MIMO Multi-Agent Systems Using Network Optimization. IEEE Transactions on Automatic Control vol. 64 4512–4524 (2019) – 10.1109/tac.2019.2908258
- Matei, I., Mavridis, C., Baras, J. S. & Zhenirovskyy, M. Inferring Particle Interaction Physical Models and Their Dynamical Properties. 2019 IEEE 58th Conference on Decision and Control (CDC) 4615–4621 (2019) doi:10.1109/cdc40024.2019.9029524 – 10.1109/cdc40024.2019.9029524
- Ma, Y., Chen, J., Wang, J., Xu, Y. & Wang, Y. Path-Tracking Considering Yaw Stability With Passivity-Based Control for Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems vol. 23 8736–8746 (2022) – 10.1109/tits.2021.3085713
- Knorn, S., Donaire, A., Agüero, J. C. & Middleton, R. H. Passivity-based control for multi-vehicle systems subject to string constraints. Automatica vol. 50 3224–3230 (2014) – 10.1016/j.automatica.2014.10.038
- Dai, S. & Koutsoukos, X. Safety analysis of integrated adaptive cruise control and lane keeping control using discrete-time models of port-Hamiltonian systems. 2017 American Control Conference (ACC) 2980–2985 (2017) doi:10.23919/acc.2017.7963404 – 10.23919/acc.2017.7963404
- Dai, S. & Koutsoukos, X. Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems. Nonlinear Analysis: Hybrid Systems vol. 35 100816 (2020) – 10.1016/j.nahs.2019.100816
- Bansal, H. et al. Port-Hamiltonian formulation of two-phase flow models. Systems & Control Letters vol. 149 104881 (2021) – 10.1016/j.sysconle.2021.104881
- Rashad, R., Califano, F., Schuller, F. P. & Stramigioli, S. Port-Hamiltonian modeling of ideal fluid flow: Part I. Foundations and kinetic energy. Journal of Geometry and Physics vol. 164 104201 (2021) – 10.1016/j.geomphys.2021.104201
- INTERNATIONAL CONFERENCES. Medical Journal of Australia vol. 2 409–411 (1975) – 10.5694/j.1326-5377.1975.tb105931.x
- HENDERSON, L. F. The Statistics of Crowd Fluids. Nature vol. 229 381–383 (1971) – 10.1038/229381a0
- Martinez-Gil, F., Lozano, M., García-Fernández, I. & Fernández, F. Modeling, Evaluation, and Scale on Artificial Pedestrians. ACM Computing Surveys vol. 50 1–35 (2017) – 10.1145/3117808
- Chraibi, M., Tordeux, A., Schadschneider, A. & Seyfried, A. Modelling of Pedestrian and Evacuation Dynamics. Encyclopedia of Complexity and Systems Science 1–22 (2018) doi:10.1007/978-3-642-27737-5_705-1 – 10.1007/978-3-642-27737-5_705-1
- Bellomo, N. & Dogbe, C. On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives. SIAM Review vol. 53 409–463 (2011) – 10.1137/090746677
- Albi, G. et al. Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives. Mathematical Models and Methods in Applied Sciences vol. 29 1901–2005 (2019) – 10.1142/s0218202519500374
- Mishra, P. & Wrzosek, D. Repulsive chemotaxis and predator evasion in predator–prey models with diffusion and prey-taxis. Mathematical Models and Methods in Applied Sciences vol. 32 1–42 (2021) – 10.1142/s0218202522500014
- Fischer, M. et al. Micro- and macroscopic modeling of crowding and pushing in corridors. Networks & Heterogeneous Media vol. 15 405–426 (2020) – 10.3934/nhm.2020025
- Barré, J. et al. Modelling pattern formation through differential repulsion. Networks & Heterogeneous Media vol. 15 307–352 (2020) – 10.3934/nhm.2020021
- Burger, M., Kreusser, L. M. & Totzeck, C. Mean-field optimal control for biological pattern formation. ESAIM: Control, Optimisation and Calculus of Variations vol. 27 40 (2021) – 10.1051/cocv/2021034
- Burger, M., Pinnau, R., Totzeck, C. & Tse, O. Mean-Field Optimal Control and Optimality Conditions in the Space of Probability Measures. SIAM Journal on Control and Optimization vol. 59 977–1006 (2021) – 10.1137/19m1249461
- Helbing, D. & Molnár, P. Social force model for pedestrian dynamics. Physical Review E vol. 51 4282–4286 (1995) – 10.1103/physreve.51.4282
- Chraibi, M. et al. Force-based models of pedestrian dynamics. Networks & Heterogeneous Media vol. 6 425–442 (2011) – 10.3934/nhm.2011.6.425
- van den Berg, J., Ming Lin & Manocha, D. Reciprocal Velocity Obstacles for real-time multi-agent navigation. 2008 IEEE International Conference on Robotics and Automation (2008) doi:10.1109/robot.2008.4543489 – 10.1109/robot.2008.4543489
- van den Berg, J., Guy, S. J., Lin, M. & Manocha, D. Reciprocal n-Body Collision Avoidance. Springer Tracts in Advanced Robotics 3–19 (2011) doi:10.1007/978-3-642-19457-3_1 – 10.1007/978-3-642-19457-3_1
- van Toll, W. & Pettré, J. Algorithms for Microscopic Crowd Simulation: Advancements in the 2010s. Computer Graphics Forum vol. 40 731–754 (2021) – 10.1111/cgf.142664
- Chraibi, M. et al. Jamming transitions in force-based models for pedestrian dynamics. Physical Review E vol. 92 (2015) – 10.1103/physreve.92.042809
- Nowak, S. & Schadschneider, A. Quantitative analysis of pedestrian counterflow in a cellular automaton model. Physical Review E vol. 85 (2012) – 10.1103/physreve.85.066128
- Kowalska, M. et al. Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product. Scientific Reports vol. 12 (2022) – 10.1038/s41598-021-99269-x
- Totzeck, C. An anisotropic interaction model with collision avoidance. Kinetic & Related Models vol. 13 1219–1242 (2020) – 10.3934/krm.2020044
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Sametoglu, F. & Celikel, O. Note: Design and characterization of an optical light source based on mixture of white and near-ultraviolet light emitting diode spectra. Review of Scientific Instruments vol. 82 (2011) – 10.1063/1.3584870
- Tordeux, A., Chraibi, M. & Seyfried, A. Collision-Free Speed Model for Pedestrian Dynamics. Traffic and Granular Flow ’15 225–232 (2016) doi:10.1007/978-3-319-33482-0_29 – 10.1007/978-3-319-33482-0_29
- U. Wilensky, Netlogo. Evanston, IL: Center for connected learning and computer-based modeling, Northwestern University, (1999).
- Boltes, M., Zhang, J., Tordeux, A., Schadschneider, A. & Seyfried, A. Empirical Results of Pedestrian and Evacuation Dynamics. Encyclopedia of Complexity and Systems Science 1–29 (2018) doi:10.1007/978-3-642-27737-5_706-1 – 10.1007/978-3-642-27737-5_706-1
- Schadschneider, A., Chraibi, M., Seyfried, A., Tordeux, A. & Zhang, J. Pedestrian Dynamics: From Empirical Results to Modeling. Modeling and Simulation in Science, Engineering and Technology 63–102 (2018) doi:10.1007/978-3-030-05129-7_4 – 10.1007/978-3-030-05129-7_4
- Rex, M. & Löwen, H. Lane formation in oppositely charged colloids driven by an electric field: Chaining and two-dimensional crystallization. Physical Review E vol. 75 (2007) – 10.1103/physreve.75.051402
- Nowak, S. & Schadschneider, A. Quantitative analysis of pedestrian counterflow in a cellular automaton model. Physical Review E vol. 85 (2012) – 10.1103/physreve.85.066128
- Xu, Q., Chraibi, M., Tordeux, A. & Zhang, J. Generalized collision-free velocity model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications vol. 535 122521 (2019) – 10.1016/j.physa.2019.122521