Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms
Authors
A.J. van der Schaft, B.M. Maschke
Abstract
Directed graphs are shown to be endowed with a canonical Dirac structure, which is used for formulating standard consensus and coordination control algorithms as port-Hamiltonian systems.
Keywords
Directed graphs; Dirac structure; port-Hamiltonian systems; Laplacian matrix; consensus algorithms; coordination control
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2010
- Volume: 43
- Issue: 19
- Pages: 175–178
- Publisher: Elsevier BV
- DOI: 10.3182/20100913-2-fr-4014.00012
- Note: 2nd IFAC Workshop on Distributed Estimation and Control in Networked Systems
BibTeX
@article{van_der_Schaft_2010,
title={{Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms}},
volume={43},
ISSN={1474-6670},
DOI={10.3182/20100913-2-fr-4014.00012},
number={19},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={van der Schaft, A.J. and Maschke, B.M.},
year={2010},
pages={175--178}
}
References
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Trans. Automat. Contr. 52, 1380–1390 (2007) – 10.1109/tac.2007.902733
- Bollobas, (1998)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Rahmani, A., Ji, M., Mesbahi, M. & Egerstedt, M. Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective. SIAM J. Control Optim. 48, 162–186 (2009) – 10.1137/060674909
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters 56, 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Kirchhoff, G. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148, 497–508 (1847) – 10.1002/andp.18471481202
- Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 95, 215–233 (2007) – 10.1109/jproc.2006.887293
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. (1996)
- van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters 59, 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
- van der Schaft, “The Hamiltonian formulation of energy conserving physical systems with external ports”. Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, “Conservation laws and open systems on higher-dimensional networks”. (2008)
- van der Schaft, “Conservation laws and lumped system dynamics”. (2009)