Safety analysis of integrated adaptive cruise control and lane keeping control using discrete-time models of port-Hamiltonian systems
Authors
Siyuan Dai, Xenofon Koutsoukos
Abstract
For continuous-time port-Hamiltonian systems (PHS), safety can be shown using the Hamiltonian function as a barrier between the safe and unsafe states. However, the safety property may not be preserved when the system is discretized. This paper presents a safety analysis approach for discrete-time models of PHS using conservative time-discretization and applies the approach to the design of a safe integrated adaptive cruise control (ACC) and lane keeping control (LKC) system. Instead of performing safety analysis in continuous-time and then imposing conditions so that safety is preserved after discretization, safety conditions are developed for a discrete-time model. The approach is applied to the safety analysis of a vehicle dynamics composed with an ACC and a LKC. A hardware-in-the-loop simulation platform is used to evaluate the approach.
Citation
- Journal: 2017 American Control Conference (ACC)
- Year: 2017
- Volume:
- Issue:
- Pages: 2980–2985
- Publisher: IEEE
- DOI: 10.23919/acc.2017.7963404
BibTeX
@inproceedings{Dai_2017,
title={{Safety analysis of integrated adaptive cruise control and lane keeping control using discrete-time models of port-Hamiltonian systems}},
DOI={10.23919/acc.2017.7963404},
booktitle={{2017 American Control Conference (ACC)}},
publisher={IEEE},
author={Dai, Siyuan and Koutsoukos, Xenofon},
year={2017},
pages={2980--2985}
}
References
- khalil, Nonlinear Systems (2002)
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters 55, 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- MATLAB Version (2012)
- Oishi, Y. Passivity degradation under the discretization with the zero-order hold and the ideal sampler. 49th IEEE Conference on Decision and Control (CDC) 7613–7617 (2010) doi:10.1109/cdc.2010.5717886 – 10.1109/cdc.2010.5717886
- Prajna, S. Barrier certificates for nonlinear model validation. Automatica 42, 117–126 (2006) – 10.1016/j.automatica.2005.08.007
- Prajna, S. & Rantzer, A. Primal–Dual Tests for Safety and Reachability. Lecture Notes in Computer Science 542–556 (2005) doi:10.1007/978-3-540-31954-2_35 – 10.1007/978-3-540-31954-2_35
- rajamani, Vehicle Dynamics and Control. Mechanical Engineering Series (2012)
- Sloth, C., Pappas, G. J. & Wisniewski, R. Compositional safety analysis using barrier certificates. Proceedings of the 15th ACM international conference on Hybrid Systems: Computation and Control 15–24 (2012) doi:10.1145/2185632.2185639 – 10.1145/2185632.2185639
- staffans, Passive linear discrete time-invariant systems. Proceedings of the InternationalCongress of Mathematicians (2006)
- Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Trans. Robot. 21, 574–587 (2005) – 10.1109/tro.2004.842330
- Dai, S. & Koutsoukos, X. Model-based automotive control design using port-Hamiltonian systems. 2015 International Conference on Complex Systems Engineering (ICCSE) 1–6 (2015) doi:10.1109/complexsys.2015.7385987 – 10.1109/complexsys.2015.7385987
- Costa-Castello, R. & Fossas, E. On preserving passivity in sampled-data linear systems. 2006 American Control Conference 6 pp. (2006) doi:10.1109/acc.2006.1657407 – 10.1109/acc.2006.1657407
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Dai, S. & Koutsoukos, X. Safety Analysis of Automotive Control Systems Using Multi-Modal Port-Hamiltonian Systems. Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control 105–114 (2016) doi:10.1145/2883817.2883845 – 10.1145/2883817.2883845
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- eyisi, Model-based design and integration of cyber-physical systems: An adaptive cruise control case study. Journal of Control Science and Engineering Special Issue on Embedded Model-Based Control (2013)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Mechanical Simulation Corporation Ann Arbor MI USA (2013)
- Gonzalez, O. Time integration and discrete Hamiltonian systems. J Nonlinear Sci 6, 449–467 (1996) – 10.1007/bf02440162
- TTTech Computertechnik AG Vienna Austria (2013)
- van der schaft, Port-hamiltonian systems: An introductory survey. Proceedings of the InternationalCongress of Mathematicians (2006)
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- Yu, H. & Antsaklis, P. J. A passivity measure of systems in cascade based on passivity indices. 49th IEEE Conference on Decision and Control (CDC) 2186–2191 (2010) doi:10.1109/cdc.2010.5717648 – 10.1109/cdc.2010.5717648