Deviation bounds in multi agent systems described by undirected graphs
Authors
Abstract
The theory of port-Hamiltonian systems is used to derive upper bounds for the state deviations in multi-agent systems described by undirected graphs pinned to a reference signal. The upper bounds for the deviations in networks of first or second order agents, respectively, depend on the minimal eigenvalue of the extended Laplacian of the system. In networks of first order agents, the deviations decay exponentially with a rate depending on the same minimal eigenvalue. In case networks of second order systems meet specific design properties, it can be shown that the deviations also decay exponentially with half the rate compared to first order systems.
Keywords
Multi-agent systems; Pinning control; Hamiltonian systems
Citation
- Journal: Automatica
- Year: 2016
- Volume: 67
- Issue:
- Pages: 205–210
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2016.01.038
BibTeX
@article{Knorn_2016,
title={{Deviation bounds in multi agent systems described by undirected graphs}},
volume={67},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2016.01.038},
journal={Automatica},
publisher={Elsevier BV},
author={Knorn, Steffi and Ahlén, Anders},
year={2016},
pages={205--210}
}
References
- Barooah, P. & Hespanha, J. P. Error Amplification and Disturbance Propagation in Vehicle Strings with Decentralized Linear Control. Proceedings of the 44th IEEE Conference on Decision and Control 4964–4969 doi:10.1109/cdc.2005.1582948 – 10.1109/cdc.2005.1582948
- Barooah, P., Mehta, P. G. & Hespanha, J. P. Mistuning-Based Control Design to Improve Closed-Loop Stability Margin of Vehicular Platoons. IEEE Transactions on Automatic Control vol. 54 2100–2113 (2009) – 10.1109/tac.2009.2026934
- Bernstein, (2009)
- Chen, F., Chen, Z., Xiang, L., Liu, Z. & Yuan, Z. Reaching a consensus via pinning control. Automatica vol. 45 1215–1220 (2009) – 10.1016/j.automatica.2008.12.027
- Chen, T., Liu, X. & Lu, W. Pinning Complex Networks by a Single Controller. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 54 1317–1326 (2007) – 10.1109/tcsi.2007.895383
- SWAROOP, D., HEDRICK, J. K., CHIEN, C. C. & IOANNOU, P. A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1. Vehicle System Dynamics vol. 23 597–625 (1994) – 10.1080/00423119408969077
- Das, A. & Lewis, F. L. Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica vol. 46 2014–2021 (2010) – 10.1016/j.automatica.2010.08.008
- Hao, H. & Barooah, P. On Achieving Size-Independent Stability Margin of Vehicular Lattice Formations With Distributed Control. IEEE Transactions on Automatic Control vol. 57 2688–2694 (2012) – 10.1109/tac.2012.2191179
- Hao, H. & Barooah, P. Stability and robustness of large platoons of vehicles with double‐integrator models and nearest neighbor interaction. International Journal of Robust and Nonlinear Control vol. 23 2097–2122 (2012) – 10.1002/rnc.2872
- Hong, Y., Hu, J. & Gao, L. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica vol. 42 1177–1182 (2006) – 10.1016/j.automatica.2006.02.013
- Kailath, (1980)
- Khalil, (2001)
- Knorn, S., Donaire, A., Agüero, J. C. & Middleton, R. H. Passivity-based control for multi-vehicle systems subject to string constraints. Automatica vol. 50 3224–3230 (2014) – 10.1016/j.automatica.2014.10.038
- Li, X., Wang, X. & Chen, G. Pinning a Complex Dynamical Network to Its Equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 51 2074–2087 (2004) – 10.1109/tcsi.2004.835655
- Liu, X., Chen, T. & Lu, W. Consensus problem in directed networks of multi-agents via nonlinear protocols. Physics Letters A vol. 373 3122–3127 (2009) – 10.1016/j.physleta.2009.06.054
- Liu, X., Lu, W. & Chen, T. Consensus of Multi-Agent Systems With Unbounded Time-Varying Delays. IEEE Transactions on Automatic Control vol. 55 2396–2401 (2010) – 10.1109/tac.2010.2054770
- Jianquan Lu, Ho, D. W. C. & Zidong Wang. Pinning Stabilization of Linearly Coupled Stochastic Neural Networks via Minimum Number of Controllers. IEEE Transactions on Neural Networks vol. 20 1617–1629 (2009) – 10.1109/tnn.2009.2027810
- Lu, W., Li, X. & Rong, Z. Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica vol. 46 116–121 (2010) – 10.1016/j.automatica.2009.10.006
- Münz, U., Papachristodoulou, A. & Allgöwer, F. Delay robustness in consensus problems. Automatica vol. 46 1252–1265 (2010) – 10.1016/j.automatica.2010.04.008
- Munz, U., Papachristodoulou, A. & Allgower, F. Robust Consensus Controller Design for Nonlinear Relative Degree Two Multi-Agent Systems With Communication Constraints. IEEE Transactions on Automatic Control vol. 56 145–151 (2011) – 10.1109/tac.2010.2084150
- Ren, W. Multi-vehicle consensus with a time-varying reference state. Systems & Control Letters vol. 56 474–483 (2007) – 10.1016/j.sysconle.2007.01.002
- Ren, W. On Consensus Algorithms for Double-Integrator Dynamics. IEEE Transactions on Automatic Control vol. 53 1503–1509 (2008) – 10.1109/tac.2008.924961
- Seiler, P., Pant, A. & Hedrick, K. Disturbance Propagation in Vehicle Strings. IEEE Transactions on Automatic Control vol. 49 1835–1841 (2004) – 10.1109/tac.2004.835586
- Song, Q. & Cao, J. On Pinning Synchronization of Directed and Undirected Complex Dynamical Networks. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 57 672–680 (2010) – 10.1109/tcsi.2009.2024971
- Song, Q., Cao, J. & Yu, W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Systems & Control Letters vol. 59 553–562 (2010) – 10.1016/j.sysconle.2010.06.016
- Tian, Y.-P. & Liu, C.-L. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations. Automatica vol. 45 1347–1353 (2009) – 10.1016/j.automatica.2009.01.009
- van~der Schaft, (2014)
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Wang, X. F. & Chen, G. Pinning control of scale-free dynamical networks. Physica A: Statistical Mechanics and its Applications vol. 310 521–531 (2002) – 10.1016/s0378-4371(02)00772-0
- Xiang, J. & Chen, G. On the V-stability of complex dynamical networks. Automatica vol. 43 1049–1057 (2007) – 10.1016/j.automatica.2006.11.014
- Ji Xiang & Guanrong Chen. Analysis of Pinning-Controlled Networks: A Renormalization Approach. IEEE Transactions on Automatic Control vol. 54 1869–1875 (2009) – 10.1109/tac.2009.2020668
- Xiong, W., Ho, D. W. C. & Huang, C. Pinning synchronization of time-varying polytopic directed stochastic networks. Physics Letters A vol. 374 439–447 (2010) – 10.1016/j.physleta.2009.11.014
- Yang, T., Roy, S., Wan, Y. & Saberi, A. Constructing consensus controllers for networks with identical general linear agents. International Journal of Robust and Nonlinear Control vol. 21 1237–1256 (2010) – 10.1002/rnc.1641
- Yu, W., Chen, G. & Lü, J. On pinning synchronization of complex dynamical networks. Automatica vol. 45 429–435 (2009) – 10.1016/j.automatica.2008.07.016