Homogeneous Hamiltonian Control Systems Part I: Geometric Formulation
Authors
Arjan van der Schaft, Bernhard Maschke
Abstract
Contact geometry has been successfully employed for the geometric formulation and control of systems containing thermodynamic components. In this paper we elaborate on the geometric theory of symplectization of contact manifolds in order to lift contact control systems to Hamiltonian control systems with a Hamiltonian that is homogeneous in the co-state variables. This provides a new view on contact control systems as used in thermodynamics, and offers possibilities for unifying the theories of contact control systems, Hamiltonian input-output systems and port-Hamiltonian systems.
Keywords
Hamiltonian systems; nonlinear control; thermodynamics; contact geometry; homogeneous functions; invariant Lagrangian manifolds; liftings
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 1–6
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.001
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{van_der_Schaft_2018,
title={{Homogeneous Hamiltonian Control Systems Part I: Geometric Formulation}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.001},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={van der Schaft, Arjan and Maschke, Bernhard},
year={2018},
pages={1--6}
}
References
- Abraham, (1978)
- Arnold, (1989)
- Balian, R. & Valentin, P. Hamiltonian structure of thermodynamics with gauge. The European Physical Journal B vol. 21 269–282 (2001) – 10.1007/s100510170202
- Bravetti, A., Lopez-Monsalvo, C. S. & Nettel, F. Contact symmetries and Hamiltonian thermodynamics. Annals of Physics vol. 361 377–400 (2015) – 10.1016/j.aop.2015.07.010
- Brockett, (1977)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Hermann, (1973)
- Libermann, (1987)
- Maschke, B. & van der Schaft, A. Homogeneous Hamiltonian Control Systems Part II: Application to thermodynamic systems. IFAC-PapersOnLine vol. 51 7–12 (2018) – 10.1016/j.ifacol.2018.06.002
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mechanics and Thermodynamics vol. 25 779–793 (2012) – 10.1007/s00161-012-0277-2
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics vol. 14 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- Mrugala, On contact and metric structures on thermodynamic spaces. RIMS, Kokyuroku (2000)
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- van der Schaf, Hamiltonian dynamics with external forces and observations. Mathematical Systems Theory (1982)
- van der Schaf, Three Decades of Mathematical System Theory, volume 135 of Lect. Notes Contr. Inf. Sci.. (1989)
- van der Schaft, A. & Crouch, P. E. Hamiltonian and self-adjoint control systems. Systems & Control Letters vol. 8 289–295 (1987) – 10.1016/0167-6911(87)90093-4
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv fur Elektronik und Ubertragungstechnik (1995)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002