A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems
Authors
François Gay-Balmaz, Hiroaki Yoshimura
Abstract
In this paper, we present a Lagrangian variational formulation for nonequilibrium thermodynamics. This formulation is an extension of Hamilton’s principle of classical mechanics that allows the inclusion of irreversible phenomena. The irreversibility is encoded into a nonlinear phenomenological constraint given by the expression of the entropy production associated to all the irreversible processes involved. From a mathematical point of view, our variational formulation may be regarded as a generalization to nonequilibrium thermodynamics of the Lagrange–d’Alembert principle used in nonlinear nonholonomic mechanics, where the conventional Lagrange–d’Alembert principle cannot be applied since the nonlinear phenomenological constraint and its associated variational constraint must be treated separately. In our approach, to deal with the nonlinear nonholonomic constraint, we introduce a variable called the thermodynamic displacement associated to each irreversible process. This allows us to systematically define the corresponding variational constraint. In Part I, our variational theory is illustrated with various examples of discrete systems such as mechanical systems with friction, matter transfer, electric circuits, chemical reactions, and diffusion across membranes. In Part II of the present paper, we will extend our variational formulation of discrete systems to the case of continuum systems.
Keywords
Lagrangian formulation; Nonequilibrium thermodynamics; Variational formulation; Nonholonomic constraints; Irreversible processes; Discrete systems
Citation
- Journal: Journal of Geometry and Physics
- Year: 2017
- Volume: 111
- Issue:
- Pages: 169–193
- Publisher: Elsevier BV
- DOI: 10.1016/j.geomphys.2016.08.018
BibTeX
@article{Gay_Balmaz_2017,
title={{A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems}},
volume={111},
ISSN={0393-0440},
DOI={10.1016/j.geomphys.2016.08.018},
journal={Journal of Geometry and Physics},
publisher={Elsevier BV},
author={Gay-Balmaz, François and Yoshimura, Hiroaki},
year={2017},
pages={169--193}
}
References
- Gibbs, (1902)
- Onsager, L. Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 37, 405–426 (1931) – 10.1103/physrev.37.405
- de Groot, (1969)
- Truesdell, (1969)
- Glansdorff, (1971)
- Stueckelberg, (1974)
- Biot, A virtual dissipation principle and Lagrangian equations in non-linear irreversible thermodynamics. Acad. Roy. Belg. Bull. Cl. Sci. (1975)
- Woods, (1975)
- Lavenda, (1978)
- Kondepudi, (1998)
- Onsager, L. & Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 91, 1505–1512 (1953) – 10.1103/physrev.91.1505
- Onsager, L. & Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 91, 1505–1512 (1953) – 10.1103/physrev.91.1505
- Prigogine, (1947)
- Ziegler, A possible generalization of Onsager’s theory. (1968)
- Gyarmati, (1970)
- Ichiyanagi, M. Variational principles of irreversible processes. Physics Reports 243, 125–182 (1994) – 10.1016/0370-1573(94)90052-3
- Biot, M. A. New Variational-Lagrangian Irreversible Thermodynamics with Application to Viscous Flow, Reaction–Diffusion, and Solid Mechanics. Advances in Applied Mechanics 1–91 (1984) doi:10.1016/s0065-2156(08)70042-5 – 10.1016/s0065-2156(08)70042-5
- Fukagawa, H. & Fujitani, Y. A Variational Principle for Dissipative Fluid Dynamics. Progress of Theoretical Physics 127, 921–935 (2012) – 10.1143/ptp.127.921
- Green, A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (1885)
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems. Journal of Geometry and Physics 111, 194–212 (2017) – 10.1016/j.geomphys.2016.08.019
- Gruber, C. Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston. Eur. J. Phys. 20, 259–266 (1999) – 10.1088/0143-0807/20/4/303
- Ferrari, C. & Gruber, C. Friction force: from mechanics to thermodynamics. Eur. J. Phys. 31, 1159–1175 (2010) – 10.1088/0143-0807/31/5/017
- Gruber, C. & Brechet, S. D. Lagrange Equations Coupled to a Thermal Equation: Mechanics as Consequence of Thermodynamics. Entropy 13, 367–378 (2011) – 10.3390/e13020367
- Bloch, (2003)
- Arnold, (1988)
- Jiménez, F. & Yoshimura, H. Dirac structures in vakonomic mechanics. Journal of Geometry and Physics 94, 158–178 (2015) – 10.1016/j.geomphys.2014.11.002
- Chetaev, On Gauss principle. Izv. Fiz-Mat. Obsc. Kazan Univ. (1934)
- Appell, Sur les liaisons exprimées par des relations non linéaires entre les vitesses. C. R. Math. Acad. Sci. Paris (1911)
- Marle, C.-M. Various approaches to conservative and nonconservative nonholonomic systems. Reports on Mathematical Physics 42, 211–229 (1998) – 10.1016/s0034-4877(98)80011-6
- Cendra, H., Ibort, A., de León, M. & Martı́n de Diego, D. A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints. Journal of Mathematical Physics 45, 2785–2801 (2004) – 10.1063/1.1763245
- Gruber, (1997)
- Chua, L. & McPherson, J. Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans. Circuits Syst. 21, 277–286 (1974) – 10.1109/tcs.1974.1083849
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics 57, 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics 57, 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quart. Rev. Biophys. 6, 1–134 (1973) – 10.1017/s0033583500000081
- von Helmholtz, Studien zur Statik monocyklischer Systeme. (1884)
- Podio-Guidugli, P. A virtual power format for thermomechanics. Continuum Mech. Thermodyn. 20, 479–487 (2009) – 10.1007/s00161-009-0093-5
- O. Jacobs, H. & Yoshimura, H. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics 6, 67–98 (2014) – 10.3934/jgm.2014.6.67
- Gay-Balmaz, F. & Yoshimura, H. Dirac reduction for nonholonomic mechanical systems and semidirect products. Advances in Applied Mathematics 63, 131–213 (2015) – 10.1016/j.aam.2014.10.004