Representation of heat exchanger networks using graph formalism
Authors
B. Zitte, B. Hamroun, F. Couenne, I. Pitault
Abstract
This contribution addressed the systematic representation of heat exchanger networks thanks to graph formalism. The energy representation of one heat exchanger is presented based on the incidence matrices of the graph related to heat transfer and the graph of the heat convection. Then the global heat exchanger network is obtained from the heat exchanger graph models as well as the incidence matrices of the interconnection obtained by adding additional vertices corresponding to the connector elements. The Port Hamiltonian representation of the heat network exchanger is given in the case of constant pressure. Then we show the incremental passivity of one compartment of the heat exchanger.
Keywords
Port Hamiltonian systems; Thermal systems; Network; Passivity
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 44–49
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.012
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Zitte_2018,
title={{Representation of heat exchanger networks using graph formalism}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.012},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Zitte, B. and Hamroun, B. and Couenne, F. and Pitault, I.},
year={2018},
pages={44--49}
}
References
- Calise, F., Capuano, D. & Vanoli, L. Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant. Energies vol. 8 2606–2646 (2015) – 10.3390/en8042606
- Calise, F., Dentice d’Accadia, M., Libertini, L., Quiriti, E. & Vicidomini, M. A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy. Energy vol. 126 64–87 (2017) – 10.1016/j.energy.2017.03.010
- de Groot, (1983)
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Hoang, N. H., Couenne, F., Jallut, C. & Le Gorrec, Y. Thermodynamics based stability analysis and its use for nonlinear stabilization of the CSTR. Computers & Chemical Engineering vol. 58 156–177 (2013) – 10.1016/j.compchemeng.2013.06.016
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ruszkowski, M., Garcia‐Osorio, V. & Ydstie, B. E. Passivity based control of transport reaction systems. AIChE Journal vol. 51 3147–3166 (2005) – 10.1002/aic.10543
- Sandler, (1999)
- Scholten, T., De Persis, C. & Tesi, P. Modeling and Control of Heat Networks With Storage: The Single-Producer Multiple-Consumer Case. IEEE Transactions on Control Systems Technology vol. 25 414–428 (2017) – 10.1109/tcst.2016.2565386
- Sun, K. et al. Model predictive control for improving waste heat recovery in coke dry quenching processes. Energy vol. 80 275–283 (2015) – 10.1016/j.energy.2014.11.070
- van der Schaft, A. J. & Maschke, B. M. Conservation laws and open systems on higher-dimensional networks. 2008 47th IEEE Conference on Decision and Control 799–804 (2008) doi:10.1109/cdc.2008.4738952 – 10.1109/cdc.2008.4738952
- Wang, X. et al. Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recovery of a natural gas engine. Energy Conversion and Management vol. 148 724–736 (2017) – 10.1016/j.enconman.2017.06.014
- Weber, C., Berger, M., Mehling, F., Heinrich, A. & Núñez, T. Solar cooling with water–ammonia absorption chillers and concentrating solar collector – Operational experience. International Journal of Refrigeration vol. 39 57–76 (2014) – 10.1016/j.ijrefrig.2013.08.022
- Zhou, W., Hamroun, B., Couenne, F. & Le Gorrec, Y. Distributed port-Hamiltonian modelling for irreversible processes. Mathematical and Computer Modelling of Dynamical Systems vol. 23 3–22 (2016) – 10.1080/13873954.2016.1237970