On the Geometric Structure of Hamiltonian Systems with Ports
Authors
Keywords
Dirac structure; Courant algebroid; Port-Hamiltonian system; Symplectic geometry; Poisson manifold; Integrability; 53D17; 70H05; 37J05; 70F20; 70G45
Citation
- Journal: Journal of Nonlinear Science
- Year: 2009
- Volume: 19
- Issue: 6
- Pages: 717–738
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00332-009-9052-3
BibTeX
@article{Merker_2009,
title={{On the Geometric Structure of Hamiltonian Systems with Ports}},
volume={19},
ISSN={1432-1467},
DOI={10.1007/s00332-009-9052-3},
number={6},
journal={Journal of Nonlinear Science},
publisher={Springer Science and Business Media LLC},
author={Merker, Jochen},
year={2009},
pages={717--738}
}
References
- G. Blankenstein. Blankenstein, G., van der Schaft, A.J.: Closedness of interconnected Dirac structures. In: Preprints 4th NOLCOS’98, pp. 381–386. Elsevier, Amsterdam (1998) (1998)
- Bloch, A. M. Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics (Springer New York, 2003). doi:10.1007/b97376 – 10.1007/b97376
- H. Bursztyn. Bursztyn, H., Crainic, M., Severa, P.: Quasi-Poisson structures as Dirac structures. Trav. Math. XVI, 41–52 (2005) (2005)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- T. Courant. Courant, T., Weinstein, A.: Beyond Poisson structures, Séminaire Sud-Rhodanien de Géométrie VIII. Trav. En Cours 27, 39–49 (1988) (1988)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- I. Dorfman. Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, New York (1993) (1993)
- Y. Kosmann-Schwarzbach. Kosmann-Schwarzbach, Y.: Quasi, twisted, and all that…in Poisson geometry and Lie algebroid theory. In: Marsden, J.E., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry. Progr. Math., vol. 232, pp. 363–389. Birkhäuser, Basel (2005) (2005)
- Z. Liu. Liu, Z., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 647–574 (1997) (1997)
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics vol. 57 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Roytenberg, D., Courant algebroids, derived brackets, and even symplectic supermanifolds. Ph.D. thesis, University of California, Berkeley (1999)
- Ševera, P. & Weinstein, A. Poisson Geometry with a 3-Form Background. Progress of Theoretical Physics Supplement vol. 144 145–154 (2001) – 10.1143/ptps.144.145
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- A.J. Schaft van der. van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektr. Übertrag. 49, 362–371 (1995) (1995)
- van der Schaft, A. & Maschke, B. Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems. Modelling and Control of Mechanical Systems 1–15 (1997) doi:10.1142/9781848160873_0001 – 10.1142/9781848160873_0001