A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system
Authors
Chengxing Lv, Haisheng Yu, Jieru Chi, Tao Xu, Hechao Zang, Hui lue Jiang, Zhaowen Zhang
Abstract
The speed and heading control problem of an underactuated unmanned surface vehicle (USV) has been studied in this paper. The thrust system consists of two propellers which are driven by two electric-powered motors. A hybrid coordination control strategy based on signal and energy method is proposed. The energy controller uses the Port-Controlled Hamiltonian (PCH) control approach, and the signal controller uses the Lyapunov’s direct method and backstepping approach. The design of coordination control strategy is used to adjust the strength of the signal controller and energy controller. Simulation results confirm the validity and stability of control algorithm, and the results show that the proposed algorithm can quickly track signals with energy optimization.
Keywords
backstepping approach, coordinate control, speed and heading control, the port-controlled hamiltonian, unmanned surface vehicles
Citation
- Journal: Ocean Engineering
- Year: 2019
- Volume: 176
- Issue:
- Pages: 222–230
- Publisher: Elsevier BV
- DOI: 10.1016/j.oceaneng.2019.02.007
BibTeX
@article{Lv_2019,
title={{A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system}},
volume={176},
ISSN={0029-8018},
DOI={10.1016/j.oceaneng.2019.02.007},
journal={Ocean Engineering},
publisher={Elsevier BV},
author={Lv, Chengxing and Yu, Haisheng and Chi, Jieru and Xu, Tao and Zang, Hechao and Jiang, Hui lue and Zhang, Zhaowen},
year={2019},
pages={222--230}
}References
- Do, K. D. & Pan, J. Global robust adaptive path following of underactuated ships. Automatica 42, 1713–1722 (2006) – 10.1016/j.automatica.2006.04.026
- Do, K. D. & Pan, J. Robust path-following of underactuated ships: Theory and experiments on a model ship. Ocean Engineering 33, 1354–1372 (2006) – 10.1016/j.oceaneng.2005.07.011
- Donaire, Port-Hamiltonian theory of motion control for marine craft. (2010)
- Donaire, A., Romero, J. G., Ortega, R., Siciliano, B. & Crespo, M. Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust. Nonlinear Control 27, 1000–1016 (2016) – 10.1002/rnc.3615
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute 354, 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Dong, Z., Wan, L., Li, Y., Liu, T. & Zhang, G. Trajectory tracking control of underactuated USV based on modified backstepping approach. International Journal of Naval Architecture and Ocean Engineering 7, 817–832 (2015) – 10.1515/ijnaoe-2015-0058
- Du, J., Hu, X., Krstić, M. & Sun, Y. Robust dynamic positioning of ships with disturbances under input saturation. Automatica 73, 207–214 (2016) – 10.1016/j.automatica.2016.06.020
- Fossen, (2002)
- Ghommam, J., Mnif, F., Benali, A. & Derbel, N. Asymptotic Backstepping Stabilization of an Underactuated Surface Vessel. IEEE Trans. Contr. Syst. Technol. 14, 1150–1157 (2006) – 10.1109/tcst.2006.880220
- Jiunn-Jiang Chen & Kan-Ping Chin. Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors. IEEE Trans. Power Electron. 18, 929–936 (2003) – 10.1109/tpel.2003.813751
- Khalil, (2000)
- Klinger, W. B., Bertaska, I. R., von Ellenrieder, K. D. & Dhanak, M. R. Control of an Unmanned Surface Vehicle With Uncertain Displacement and Drag. IEEE J. Oceanic Eng. 42, 458–476 (2017) – 10.1109/joe.2016.2571158
- Lanczos, (1986)
- Liao, Y., Su, Y. & Cao, J. Trajectory planning and tracking control for underactuated unmanned surface vessels. J. Cent. South Univ. 21, 540–549 (2014) – 10.1007/s11771-014-1972-x
- Liao, Y., Zhang, M., Wan, L. & Li, Y. Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties. J. Cent. South Univ. 23, 370–378 (2016) – 10.1007/s11771-016-3082-4
- Liao, (2010)
- Liberzon, (2003)
- Liu, Z., Zhang, Y., Yu, X. & Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control 41, 71–93 (2016) – 10.1016/j.arcontrol.2016.04.018
- Lv, Speed and heading control of an unmanned surface vehicle based on state error PCH principle. Math. Probl Eng. (2018)
- Naeem, The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring. Proc. IME M J. Eng. Marit. Environ. (2008)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Renton, (2012)
- Roberts, (2006)
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters 62, 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Sean Kragelund, Adaptive speed control for autonomous surface vessels. (2013)
- Simetti, Towards the use of a team of USVs for civilian harbour protection: real time path planning with avoidance of multiple moving obstacles. (2009)
- Sonnenburg, (2012)
- Sontag, Input to state stability: basic concepts and results. (2008)
- Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3