Disturbance rejection in formation keeping control of nonholonomic wheeled robots
Authors
Matin Jafarian, Ewoud Vos, Claudio De Persis, Jacquelien Scherpen, Arjan van der Schaft
Abstract
This paper presents the results of formation keeping control of a group of nonholonomic wheeled robots within the port‐Hamiltonian framework and in the presence of matched input disturbances. Two scenarios on the internal damping of the dynamics of the robots are considered: strictly output passive and loss less robots. For strictly output passive robots, the distributed formation keeping controllers drive the robots towards a desired formation, while internal‐model‐based controllers locally compensate the harmonic input disturbance for each of the robots. Moreover, the effect of constant input disturbances is studied considering internal‐model‐based controllers. For lossless robots, results on formation keeping control are presented. Simulation results illustrate the effectiveness of the approach. Copyright © 2016 John Wiley & Sons, Ltd.
Citation
- Journal: International Journal of Robust and Nonlinear Control
- Year: 2016
- Volume: 26
- Issue: 15
- Pages: 3344–3362
- Publisher: Wiley
- DOI: 10.1002/rnc.3510
BibTeX
@article{Jafarian_2016,
title={{Disturbance rejection in formation keeping control of nonholonomic wheeled robots: DISTURBANCE REJECTION IN FORMATION CONTROL OF WHEELED ROBOTS}},
volume={26},
ISSN={1049-8923},
DOI={10.1002/rnc.3510},
number={15},
journal={International Journal of Robust and Nonlinear Control},
publisher={Wiley},
author={Jafarian, Matin and Vos, Ewoud and De Persis, Claudio and Scherpen, Jacquelien and van der Schaft, Arjan},
year={2016},
pages={3344--3362}
}
References
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Transactions on Automatic Control vol. 52 1380–1390 (2007) – 10.1109/tac.2007.902733
- Bai, H., Arcak, M. & Wen, J. Cooperative Control Design. Communications and Control Engineering (Springer New York, 2011). doi:10.1007/978-1-4614-0014-1 – 10.1007/978-1-4614-0014-1
- Bürger, M. & De Persis, C. Dynamic coupling design for nonlinear output agreement and time-varying flow control. Automatica vol. 51 210–222 (2015) – 10.1016/j.automatica.2014.10.081
- De Persis, C. & Jayawardhana, B. On the Internal Model Principle in the Coordination of Nonlinear Systems. IEEE Transactions on Control of Network Systems vol. 1 272–282 (2014) – 10.1109/tcns.2014.2338554
- Jafarian, M. & De Persis, C. Exact formation control with very coarse information. 2013 American Control Conference 3026–3031 (2013) doi:10.1109/acc.2013.6580295 – 10.1109/acc.2013.6580295
- Jafarian, M. & De Persis, C. Formation control using binary information. Automatica vol. 53 125–135 (2015) – 10.1016/j.automatica.2014.12.016
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Xargay, E., Choe, R., Hovakimyan, N. & Kaminer, I. Convergence of a PI coordination protocol in networks with switching topology and quantized measurements. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 6107–6112 (2012) doi:10.1109/cdc.2012.6426392 – 10.1109/cdc.2012.6426392
- Gentili, L. & van der Schaft, A. Regulation and Input Disturbance Suppression for Port-Controlled Hamiltonian Systems 1. IFAC Proceedings Volumes vol. 36 205–210 (2003) – 10.1016/s1474-6670(17)38892-4
- Gentili, L., Paoli, A. & Bonivento, C. Input Disturbance Suppression for Port-Hamiltonian Systems: An Internal Model Approach. Lecture Notes in Control and Information Sciences 85–98 doi:10.1007/978-3-540-70701-1_5 – 10.1007/978-3-540-70701-1_5
- Brockett, Asymptotic Stability and Feedback Stabilization (1983)
- Astolfi, A. Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control. Journal of Dynamic Systems, Measurement, and Control vol. 121 121–126 (1999) – 10.1115/1.2802429
- Samson, C. Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots. The International Journal of Robotics Research vol. 12 55–64 (1993) – 10.1177/027836499301200104
- Ren, W. & Beard, R. W. Distributed Consensus in Multi-Vehicle Cooperative Control. Communications and Control Engineering (Springer London, 2008). doi:10.1007/978-1-84800-015-5 – 10.1007/978-1-84800-015-5
- Do, K. D. & Pan, J. Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems vol. 55 191–204 (2007) – 10.1016/j.robot.2006.09.001
- Sadowska, A., Kostic, D., van de Wouw, N., Huijberts, H. & Nijmeijer, H. Distributed formation control of unicycle robots. 2012 IEEE International Conference on Robotics and Automation 1564–1569 (2012) doi:10.1109/icra.2012.6224947 – 10.1109/icra.2012.6224947
- Vos, E., Scherpen, J. M. A., Schaft, A. J. van der & Postma, A. Formation Control of Wheeled Robots in the Port-Hamiltonian Framework. IFAC Proceedings Volumes vol. 47 6662–6667 (2014) – 10.3182/20140824-6-za-1003.00394
- Isidori, A., Marconi, L. & Serrani, A. Robust Autonomous Guidance. Advances in Industrial Control (Springer London, 2003). doi:10.1007/978-1-4471-0011-9 – 10.1007/978-1-4471-0011-9
- Vos, E., Jafarian, M., Persis, C. D., Scherpen, J. M. A. & Schaft, A. J. van der. Formation control of nonholonomic wheeled robots in the presence of matched input disturbances. IFAC-PapersOnLine vol. 48 63–68 (2015) – 10.1016/j.ifacol.2015.10.215
- Mondada, The e-puck, a robot designed for education in engineering. Conference on Autonomous Robot Systems and Competitions (2009)