Formation control of nonholonomic wheeled robots in the presence of matched input disturbances
Authors
Ewoud Vos, Matin Jafarian, Claudio De Persis, Jacquelien M.A. Scherpen, Arjan J. van der Schaft
Abstract
This paper presents a new approach for formation keeping control of a network of nonholonomic wheeled robots within the port-Hamiltonian framework in the presence of matched input disturbances. The formation keeping controller drives the network towards a desired formation by assigning virtual couplings between the robots, while an internal-modelbased controller is designed to locally compensate the disturbance for each of the robots.
Keywords
Disturbance rejection; formation control; nonholonomic systems; port-Hamiltonian systems; internal model control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 63–68
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.215
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Vos_2015,
title={{Formation control of nonholonomic wheeled robots in the presence of matched input disturbances}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.215},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Vos, Ewoud and Jafarian, Matin and Persis, Claudio De and Scherpen, Jacquelien M.A. and Schaft, Arjan J. van der},
year={2015},
pages={63--68}
}
References
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Transactions on Automatic Control vol. 52 1380–1390 (2007) – 10.1109/tac.2007.902733
- Astolfi, A. Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control. Journal of Dynamic Systems, Measurement, and Control vol. 121 121–126 (1999) – 10.1115/1.2802429
- Bai, (2011)
- Brockett, (1983)
- Bürger, M. & De Persis, C. Dynamic coupling design for nonlinear output agreement and time-varying flow control. Automatica vol. 51 210–222 (2015) – 10.1016/j.automatica.2014.10.081
- De Persis, C. & Jayawardhana, B. On the Internal Model Principle in the Coordination of Nonlinear Systems. IEEE Transactions on Control of Network Systems vol. 1 272–282 (2014) – 10.1109/tcns.2014.2338554
- Do, K. D. & Pan, J. Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems vol. 55 191–204 (2007) – 10.1016/j.robot.2006.09.001
- Gentili, Input disturbance suppression for port-Hamiltonian systems: an internal model approach. (2007)
- Gentili, Regulation and input disturbance suppression for port-controlled Hamiltonian systems. (2003)
- Isidori, (2003)
- Jafarian, M. & De Persis, C. Formation control using binary information. Automatica vol. 53 125–135 (2015) – 10.1016/j.automatica.2014.12.016
- Mondada, The e-puck, a robot designed for education in engineering. (2009)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ren, (2007)
- Sadowska, Distributed formation control of unicycle robots. (2012)
- Samson, C. Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots. The International Journal of Robotics Research vol. 12 55–64 (1993) – 10.1177/027836499301200104
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Vos, Port-Hamiltonian approach to deployment. (2012)
- Vos, Formation control of wheeled robots in the port-Hamiltonian framework. (2014)