Formation Control of Wheeled Robots in the Port-Hamiltonian Framework
Authors
Ewoud Vos, Jacquelien M.A. Scherpen, Arjan J. van der Schaft, Ate Postma
Abstract
This paper proposes a new control strategy for the formation control of a network of wheeled robots. Starting from the rigid body dynamics, a dynamical model of the wheeled robot is derived in the port-Hamiltonian framework. The formation control objective is achieved by interconnecting the robots using virtual couplings, which give a clear physical interpretation of the proposed solution. Simulation and experimental results are given, to illustrate the effectiveness of the approach.
Keywords
Networked robotic system modeling and control; Mobile robots
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2014
- Volume: 47
- Issue: 3
- Pages: 6662–6667
- Publisher: Elsevier BV
- DOI: 10.3182/20140824-6-za-1003.00394
- Note: 19th IFAC World Congress
BibTeX
@article{Vos_2014,
title={{Formation Control of Wheeled Robots in the Port-Hamiltonian Framework}},
volume={47},
ISSN={1474-6670},
DOI={10.3182/20140824-6-za-1003.00394},
number={3},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Vos, Ewoud and Scherpen, Jacquelien M.A. and Schaft, Arjan J. van der and Postma, Ate},
year={2014},
pages={6662--6667}
}
References
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Trans. Automat. Contr. 52, 1380–1390 (2007) – 10.1109/tac.2007.902733
- Bai, (2011)
- Bollobás, (1998)
- Brockett, (1983)
- Duindam, (2009)
- Kurabayashi, D., Ota, J., Arai, T. & Yoshida, E. Cooperative sweeping by multiple mobile robots. Proceedings of IEEE International Conference on Robotics and Automation vol. 2 1744–1749 – 10.1109/robot.1996.506964
- Lawton, J. R. T., Beard, R. W. & Young, B. J. A decentralized approach to formation maneuvers. IEEE Trans. Robot. Automat. 19, 933–941 (2003) – 10.1109/tra.2003.819598
- Obermeyer, K. J., Ganguli, A. & Bullo, F. Multi‐agent deployment for visibility coverage in polygonal environments with holes. Intl J Robust & Nonlinear 21, 1467–1492 (2011) – 10.1002/rnc.1700
- Ortega, Putting energy back in control. IEEE Control Systems Magazine (2002)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- Vos, E., Scherpen, J. M. A. & van der Schaft, A. J. Equal distribution of satellite constellations on circular target orbits. Automatica 50, 2641–2647 (2014) – 10.1016/j.automatica.2014.08.027