Dirac Structures and Control by Interconnection for Distributed Port-Hamiltonian Systems
Authors
Abstract
The aim of this work is to show how the Dirac structure properties can be exploited in the development of energy-based boundary control laws for distributed port-Hamiltonian systems. Stabilisation of non-zero equilibria has been achieved by looking at, or generating, a set of structural invariants, namely Casimir functions, in closed-loop, and geometric conditions for the problem to be solved are determined. However, it is well known that this method fails when an infinite amount of energy is required at the equilibrium (dissipation obstacle). So, a novel approach that enlarges the class of stabilising controllers within the control by interconnection paradigm is also discussed. In this respect, it is shown how to determine a different control port that is instrumental for removing the intrinsic constraints imposed by the dissipative structure of the system. The general theory is illustrated with the help of two related examples, namely the boundary stabilisation of the shallow water equation with and without distributed dissipation.
Keywords
Resistive Structure; Shallow Water Equation; Resistive Relation; Structural Invariant; Dirac Structure
Citation
- ISBN: 9783319209876
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-319-20988-3_2
BibTeX
@inbook{Macchelli_2015,
title={{Dirac Structures and Control by Interconnection for Distributed Port-Hamiltonian Systems}},
ISBN={9783319209883},
ISSN={1610-7411},
DOI={10.1007/978-3-319-20988-3_2},
booktitle={{Mathematical Control Theory I}},
publisher={Springer International Publishing},
author={Macchelli, Alessandro},
year={2015},
pages={21--36}
}
References
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control vol. 16 545–563 (2010) – 10.3166/ejc.16.545-563
- Iftime, O. V. & Sandovici, A. Interconnection of Dirac structures via kernel/image representation. Proceedings of the 2011 American Control Conference 3571–3576 (2011) doi:10.1109/acc.2011.5991091 – 10.1109/acc.2011.5991091
- O. Iftime, A. Sandovici, G. Golo, Tools for Analysis of Dirac Structures on Banach Spaces, in Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2005), 2005, pp. 3856–3861
- Jeltsema, D., Ortega, R. & M.A. Scherpen, J. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica vol. 40 1643–1646 (2004) – 10.1016/j.automatica.2004.04.007
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Passivity-based control of implicit port-Hamiltonian systems. 2013 European Control Conference (ECC) 2098–2103 (2013) doi:10.23919/ecc.2013.6669288 – 10.23919/ecc.2013.6669288
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Infinite-Dimensional Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 211–271 (2009) doi:10.1007/978-3-642-03196-0_4 – 10.1007/978-3-642-03196-0_4
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- A. Macchelli, Y. Le Gorrec, H. Ramírez, H. Zwart, On the synthesis of boundary control laws for distributed port-Hamiltonian systems. IEEE Trans. Autom. Control (2014) (submitted)
- Macchelli, A., Gorrec, Y. L. & Ramirez, H. Asymptotic Stabilisation of Distributed Port-Hamiltonian Systems by Boundary Energy-Shaping Control. IFAC-PapersOnLine vol. 48 488–493 (2015) – 10.1016/j.ifacol.2015.05.143
- Ortega, R. & Borja, L. P. New results on Control by Interconnection and Energy-Balancing Passivity-Based Control of port-hamiltonian systems. 53rd IEEE Conference on Decision and Control 2346–2351 (2014) doi:10.1109/cdc.2014.7039746 – 10.1109/cdc.2014.7039746
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- R. Pasumarthy, V. Ambati, A. van der Schaft, Port-Hamiltonian Formulation of Shallow Water Equations with Coriolis Force and Topography, in Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2008), Blacksburg, VA, USA, 2008
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- H. Rodriguez, A. van der Schaft, R. Ortega, On Stabilization of Nonlinear Distributed Parameter Port-Controlled Hamiltonian Systems via Energy Shaping, in Proceedings of the 40th IEEE Conference on Decision and Control (CDC 2001), vol. 1, 2001, pp. 131–136
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Transactions on Automatic Control vol. 58 1823–1828 (2013) – 10.1109/tac.2012.2235739
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Venkatraman, A. & van der Schaft, A. Energy Shaping of Port-Hamiltonian Systems by Using Alternate Passive Input-Output Pairs. European Journal of Control vol. 16 665–677 (2010) – 10.3166/ejc.16.665-677
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176