Dirac structure for linear dynamical systems on Sobolev spaces
Authors
N. Kumar, H.J. Zwart, J.J.W. van der Vegt
Abstract
The port-Hamiltonian structure of linear dynamical systems is defined by a Dirac structure. In this paper we prove existence and well-posedness of a Dirac structure for linear dynamical systems on Sobolev spaces of differential forms on a bounded, connected and oriented manifold with Lipschitz continuous boundary. This result extends the proof of a Dirac structure for linear dynamical systems originally defined on smooth differential forms to a much larger class of function spaces, which is of theoretical importance and provides a solid basis for the numerical discretization of many linear port-Hamiltonian dynamical systems.
Keywords
Port-Hamiltonian systems; Dirac structure; Sobolev spaces of differential forms
Citation
- Journal: Journal of Mathematical Analysis and Applications
- Year: 2025
- Volume:
- Issue:
- Pages: 129493
- Publisher: Elsevier BV
- DOI: 10.1016/j.jmaa.2025.129493
BibTeX
@article{Kumar_2025,
title={{Dirac structure for linear dynamical systems on Sobolev spaces}},
ISSN={0022-247X},
DOI={10.1016/j.jmaa.2025.129493},
journal={Journal of Mathematical Analysis and Applications},
publisher={Elsevier BV},
author={Kumar, N. and Zwart, H.J. and van der Vegt, J.J.W.},
year={2025},
pages={129493}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Cheng, X., Van der Vegt, J. J. W., Xu, Y. & Zwart, H. J. Port-Hamiltonian formulations of the incompressible Euler equations with a free surface. Journal of Geometry and Physics vol. 197 105097 (2024) – 10.1016/j.geomphys.2023.105097
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Toledo-Zucco, J.-P., Matignon, D., Poussot-Vassal, C. & Le Gorrec, Y. Structure-Preserving Discretization and Model Order Reduction of Boundary-Controlled 1d Port-Hamiltonian Systems. (2024) doi:10.2139/ssrn.4725200 – 10.2139/ssrn.4725200
- Kumar, N., van der Vegt, J. J. W. & Zwart, H. J. Port-Hamiltonian discontinuous Galerkin finite element methods. IMA Journal of Numerical Analysis vol. 45 354–403 (2024) – 10.1093/imanum/drae008
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Buffa, A., Costabel, M. & Sheen, D. On traces for H(curl,Ω) in Lipschitz domains. Journal of Mathematical Analysis and Applications vol. 276 845–867 (2002) – 10.1016/s0022-247x(02)00455-9
- Hiptmair, R., Pauly, D. & Schulz, E. Traces for Hilbert complexes. Journal of Functional Analysis vol. 284 109905 (2023) – 10.1016/j.jfa.2023.109905
- Mitrea, D., Mitrea, M. & Shaw, M.-C. Traces of differential forms on Lipschitz domains, the boundary De Rham complex, and Hodge decompositions. Indiana University Mathematics Journal vol. 57 2061–2096 (2008) – 10.1512/iumj.2008.57.3338
- Weck, N. TRACES OF DIFFERENTIAL FORMS ON LIPSCHITZ BOUNDARIES. Analysis vol. 24 (2004) – 10.1524/anly.2004.24.14.147
- Frankel, T. The Geometry of Physics. (2011) doi:10.1017/cbo9781139061377 – 10.1017/cbo9781139061377
- Kurz, S. & Auchmann, B. Differential Forms and Boundary Integral Equations for Maxwell-Type Problems. Lecture Notes in Applied and Computational Mechanics 1–62 (2012) doi:10.1007/978-3-642-25670-7_1 – 10.1007/978-3-642-25670-7_1
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017