Port-Hamiltonian discontinuous Galerkin finite element methods
Authors
Nishant Kumar, J J W van der Vegt, H J Zwart
Abstract
A port-Hamiltonian (pH) system formulation is a geometrical notion used to formulate conservation laws for various physical systems. The distributed parameter port-Hamiltonian formulation models infinite dimensional Hamiltonian dynamical systems that have a nonzero energy flow through the boundaries. In this paper, we propose a novel framework for discontinuous Galerkin (DG) discretizations of pH-systems. Linking DG methods with pH-systems gives rise to compatible structure preserving semidiscrete finite element discretizations along with flexibility in terms of geometry and function spaces of the variables involved. Moreover, the port-Hamiltonian formulation makes boundary ports explicit, which makes the choice of structure and power preserving numerical fluxes easier. We state the Discontinuous Finite Element Stokes–Dirac structure with a power preserving coupling between elements, which provides the mathematical framework for a large class of pH discontinuous Galerkin discretizations. We also provide an a priori error analysis for the port-Hamiltonian discontinuous Galerkin Finite Element Method (pH-DGFEM). The port-Hamiltonian discontinuous Galerkin finite element method is demonstrated for the scalar wave equation showing optimal rates of convergence.
Citation
- Journal: IMA Journal of Numerical Analysis
- Year: 2025
- Volume: 45
- Issue: 1
- Pages: 354–403
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imanum/drae008
BibTeX
@article{Kumar_2024,
title={{Port-Hamiltonian discontinuous Galerkin finite element methods}},
volume={45},
ISSN={1464-3642},
DOI={10.1093/imanum/drae008},
number={1},
journal={IMA Journal of Numerical Analysis},
publisher={Oxford University Press (OUP)},
author={Kumar, Nishant and van der Vegt, J J W and Zwart, H J},
year={2024},
pages={354--403}
}
References
- Abraham, Manifolds, Tensor Analysis, and Applications (2012)
- Arnold, D. N. Spaces of Finite Element Differential Forms. Springer INdAM Series 117–140 (2013) doi:10.1007/978-88-470-2592-9_9 – 10.1007/978-88-470-2592-9_9
- Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
- Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
- Brugnoli, A., Rashad, R. & Stramigioli, S. Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus. Journal of Computational Physics vol. 471 111601 (2022) – 10.1016/j.jcp.2022.111601
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Castillo, P. & Gómez, S. Conservative Local Discontinuous Galerkin method for the fractional Klein-Gordon-Schrödinger system with generalized Yukawa interaction. Numerical Algorithms vol. 84 407–425 (2019) – 10.1007/s11075-019-00761-3
- Castillo, Conservative super-convergent and hybrid discontinuous Galerkin methods applied to nonlinear Schrödinger equations. Appl. Math. Comput. (2020)
- Celledoni, E. & Jackaman, J. Discrete conservation laws for finite element discretisations of multisymplectic PDEs. Journal of Computational Physics vol. 444 110520 (2021) – 10.1016/j.jcp.2021.110520
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Courant, Beyond Poisson structures. Action Hamiltoniennes de groupes. Troisieme théoreme de Lie (Lyon, 1986) (1988)
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Di Pietro, Mathematical Aspects of Discontinuous Galerkin Methods (2011)
- Ern, A. & Guermond, J.-L. Theory and Practice of Finite Elements. Applied Mathematical Sciences (Springer New York, 2004). doi:10.1007/978-1-4757-4355-5 – 10.1007/978-1-4757-4355-5
- Evans, Partial Differential Equations (2010)
- Flanders, Differential Forms With Applications to the Physical Sciences (1963)
- Frankel, T. The Geometry of Physics. (2011) doi:10.1017/cbo9781139061377 – 10.1017/cbo9781139061377
- Geng, Symplectic partitioned Runge–Kutta methods. J. Comput. Math. (1993)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hairer, E., Wanner, G. & Lubich, C. Symplectic Integration of Hamiltonian Systems. Springer Series in Computational Mathematics 179–236 doi:10.1007/3-540-30666-8_6 – 10.1007/3-540-30666-8_6
- Hesthaven, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007)
- Hirani, Discrete exterior calculus. (2003)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kotyczka, Numerical Methods for Distributed Parameter Port-Hamiltonian Systems (2019)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kumar, Stokes–Dirac structure on Sobolev spaces.
- Loday, Cyclic Homology (2013)
- Lopezlena, R., Scherpen, J. M. A. & Fujimoto, K. Energy-Storage Balanced Reduction of Port-Hamiltonian Systems. IFAC Proceedings Volumes vol. 36 69–74 (2003) – 10.1016/s1474-6670(17)38869-9
- Marsden, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems (2013)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rivière, B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. (2008) doi:10.1137/1.9780898717440 – 10.1137/1.9780898717440
- Romeo, G. Mathematics for dynamic economic models. Elements of Numerical Mathematical Economics with Excel 139–215 (2020) doi:10.1016/b978-0-12-817648-1.00004-9 – 10.1016/b978-0-12-817648-1.00004-9
- Schöberl, M. & Schlacher, K. First-order Hamiltonian field theory and mechanics. Mathematical and Computer Modelling of Dynamical Systems vol. 17 105–121 (2011) – 10.1080/13873954.2010.537526
- Serhani, A., Matignon, D. & Haine, G. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. Lecture Notes in Computer Science 549–558 (2019) doi:10.1007/978-3-030-26980-7_57 – 10.1007/978-3-030-26980-7_57
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Talasila, The wave equation as a port-Hamiltonian system and a finite dimensional approximation. Proceedings of 15th International Symposium Mathematical Theory of Networks and Systems (MTNS), South Bend (2002)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Xu, Y. & Shu, C.-W. Optimal Error Estimates of the Semidiscrete Local Discontinuous Galerkin Methods for High Order Wave Equations. SIAM Journal on Numerical Analysis vol. 50 79–104 (2012) – 10.1137/11082258x